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Abstract— In this paper, we present a filtering method
for estimating the shape and end effector pose of a highly
articulated surgical snake robot. Our algorithm introduces
new kinematic models that are used in the prediction step
of an extended Kalman filter whose update step incorporates
measurements from a 5-DOF electromagnetic tracking sensor
situated at the distal end of the robot. A single tracking sensor
is sufficient for estimating the shape of the system because
the robot is inherently a follow-the-leader mechanism with
well defined motion characteristics. We therefore show that,
with appropriate steering motion, the state of the filter is fully
observable. The goal of our shape estimation algorithm is to
create a more accurate and representative 3D rendered visual-
ization for image-guided surgery. We demonstrate the feasibility
of our method with results from an animal experiment in
which our shape and pose estimate was used as feedback in a
control scheme that semi-autonomously drove the robot along
the epicardial surface of a porcine heart.

I. I NTRODUCTION

With minimally invasive surgery (MIS), a physician typ-
ically performs diagnostic or interventional procedures with
a surgical tool or robot through small port-like incisions in
order to reduce patient trauma. Unfortunately, with MIS, sur-
geons cannot view an operation with direct vision and instead
must rely on indirect imaging for surgical guidance. It is
common for a surgeon to use fluoroscopy [1], ultrasound [2],
MRI [3], or endoscopy [4] for this purpose. Unfortunately, all
of these modalities have limitations. Another option isimage-
guided surgery, which seeks to display a virtualized rendered
view of an operation for guidance by fusing information from
a tracking device with preoperative surface models [5].

In this paper, we present a nonlinear stochastic filtering
method that estimates, with measurements from a magnetic
tracking sensor, the shape and configuration of a high degree
of freedom surgical snake robot, see Fig. 1. The goal of this
work is to display an accurate rendering of the snake robot
alongside preoperative surface models for image-guidance.
While it is possible to simply track the position of the distal
tip of the robot, we instead believe that estimating the full
shape and configuration of the robot would provide more
informative feedback to the surgeon: e.g., if a trajectory to
an anatomical target fails due to an anatomical obstruction,
viewing the full shape of the robot in relation to the anatomy
would tell the surgeon how and why the intended path failed.
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Fig. 1. The HARP surgical robot navigating on the surface of aphantom
heart model.

Another reason for estimating the full shape is that we can
infer twist in the robot’s configuration, which can be useful
for righting joystick inputs and rectifying video. An example
of the image-guidance we achieve is shown in Fig. 2.

To perform shape estimation for a cable-driven snake
robot, we use an extended Kalman filter (EKF) formulation
with newly defined motion models and a forward kinematic
measurement model that incorporates 5-DOF pose measure-
ments at the distal tip of the robot from an electromagnetic
tracking sensor. Full shape estimation is possible, in this
context, because the robot is inherently a follow-the-leader
device with explicitly definable motion models.

The contributions of the work presented in this paper are
1) the novel use of an EKF to estimate the shape of a sur-
gical snake robot, 2) new motion models for a cable-driven
surgical snake robot, 3) an analysis of the observability of
shape estimation with a single 5-DOF tracking sensor at
the tip of the robot, and 4) a feasibility study of our shape
estimation method through the discussion of an experiment
that involved navigating a robot semi-autonomously on the
epicardial surface of a porcine heart.

II. BACKGROUND

A. Image-Guided Surgery

Image-guided surgery is a term that is often used to de-
scribe a procedure that uses patient-specific medical images
as a form of visual feedback during surgery. In many cases,
this equates to using preoperative CT or MRI data to recon-
struct a 3D surface model of anatomical structures, as in [6].
With image-guided surgery, a tracking device is integrated
with a surgical tool and registered to the preoperative images
so that the position of the tool can be overlayed on the
rendered models, as in Fig. 2.



An example of image-guidance is [5], in which Cleary
et. al. use an electromagnetic (EM) tracker registered with
preoperative images. Also, in [7], an automatic registration
method is introduced to align EM tracker measurements with
preoperative images using an iterative closest point (ICP)
method. Commercial examples include Ensite NavX (St Jude
Medical, St Paul, MN, USA) and Carto XP/CartoMerge
(Bio-Sense Webster, Diamond Bar, CA, USA), which have
been applied successfully to electrical mapping for cardiac
ablation. The majority of existing methods track the tip of a
surgical tool in real-time, but we believe it would be more
informative to view the entire configuration of the tool, as in
Fig. 2. Tracking the full shape is the subject of this paper.

B. Shape Estimation

The use of Fiber Bragg Grating (FBG) sensors is becoming
a popular method for estimating the shape of a flexible tool.
For example, in [8], the authors use an optical fiber with FBG
sensing to determine in real-time the shape of a colonoscope.
Likewise, in [9], a novel slim FBG wire is inserted into the
biopsy channel of a colonoscope to determine shape. In [10],
the authors use optical FBG strain-sensors to measure the
shape of a flexible needle in the field of an MRI. While this
is one of the more popular methods for computing the shape
of a tool, there are several issues: the first is that the sensor
is temperature dependent. The second issue is that, while
the overall shape may be accurately detected, the Euclidean
position at the end effector may have accumulated error. Our
shape estimation algorithm presented in this paper avoids
these two drawbacks.

C. HARP Surgical Robot

The robot we are using for MIS is a highly articulated
robotic probe (HARP), which is a surgical snake robot
presented in [11]–[13]. The advantage of the HARP is
that it has the stability of a rigid device as well as the
maneuverability of a flexible tool (a photograph of the robot
can be seen in Fig. 1). This type of robot is unique, in that
it can navigate any curve in a three-dimensional space with
only six actuators. The HARP is made up of many rigid
links which are actuated at the distal end by three cables. A
prototype version of the HARP has been used experimentally
to investigate epicardial ablation on porcine models [13].

III. SNAKE SHAPE ESTIMATION

The objective of our snake shape estimation method is to
recursively compute the most likely state parameters that de-
fine the robot’s shape and configuration during image-guided
MIS. In this section, we will define the state vector that we
are estimating as well as the motion and measurement models
that we have developed for this filtering problem.

A. Kalman State Definition

The state that we are estimating in a Kalman filter frame-
work is defined as follows,

Xk = [x0, y0, z0, α0, β0, γ0, φ1, θ1, . . . φN−1, θN−1]
T
, (1)

Fig. 2. An example of overlaying a model of a surgical robot on
preoperative surface models for image-guidance. This is a live snapshot
from an experiment with the HARP navigating semi-autonomouslyon the
epicardial surface of a porcine heart.

where(x0, y0, z0) is defined to be the position of the most
proximally located link of the robot that we are interested in
tracking at time-stepk. There typically will be links behind
this first link that we do not care about until they advance
forward, see Fig. 3. Also,(α0, β0, γ0) are the yaw, pitch, and
roll respectively of that first link. The termsφi and θi for
eachi are angle offsets that we will discuss shortly.
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Fig. 3. A depiction of the state parameterization we use for defining the
configuration of the HARP snake robot. Transformation matrices derived
from the state describe the pose of each link.

To help formulate the pose of a rigid body in three
dimensions, we define the following three rotation matrices,

Rz(α)=





cα −sα 0
sα cα 0
0 0 1



, Ry(β)=





cβ 0 sβ
0 1 0

−sβ 0 cβ



, Rx(γ)=





1 0 0
0 cγ −sγ
0 sγ cγ



,

where the trigonometric notation has been simplified for
convenience (i.e.,sγ = sin(γ)). With these rotation matrices,
we can describe the pose of the most proximally referenced
link as a function of the Kalman state with a transformation
matrix,

T0(Xk) =

[

Rz(α0)Ry(β0)Rx(γ0) p0
01×3 1

]

, (2)

wherep0 = [x0, y0, z0]
T .

The pose of more distally located links are also defined
by the state vector as follows: the elementsφi and θi in
the Kalman state definition from Eq. 1 are offset angles
associated with linki that define linki’s orientation relative
to the preceding link. A visual interpretation ofφi and θi
can be seen in Fig. 4.

To compute the transformation matrixTi(Xk) that repre-
sents the pose of linki, we define the following recursive
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Fig. 4. The effect of the offset anglesφi and θi on the pose of a robot
link relative to the preceding link.

process that is initialized with the pose of the starting link,

Ti,ang(Xk) =

[

Rx(θi)Ry(φi)Rx(−θi) 03×1
01×3 1

]

Tadv =









1 0 0 L

0 1 0 0
0 0 1 0
0 0 0 1









Ti(Xk) = Ti−1(Xk)Ti,ang(Xk)Tadv,

whereL is the length of a link. As seen in Fig. 3, each linki
has an associated transformation matrix that can be computed
from the previous transformation matrix via the offsetsφi

andθi. Thus, the state vector from Eq. 1 sufficiently defines
the pose of all links and thus the shape and configuration of
the robot.

B. Advancing Motion

The HARP is a multi-link robot that is, by design, a
follow-the-leader device. (see [11] for the mechanism design
details). The robot maintains its shape in three-dimensional
space and when commanded, advances one link length at a
time: each link theoretically moves into the corresponding
pose of the link in front of it. In this case, a link behind the
most proximally referenced link will move into its place and
assume the role of the starting link of the Kalman state with
transformation matrixT0. The way the robot advances can
be seen in Fig. 5.
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Fig. 5. A depiction of the way that the HARP advances in a follow-the-
leader fashion when commanded.

When all of the links advance one step ahead, the state
space grows by two parameters (there is effectively one extra

link in the state), as seen in Fig. 5. The motion model for this
advancing step can be defined with the following function,

fa(Xk) =
[

XT
k , 0, 0

]T
. (3)

C. Retracting Motion

Like advancing, when commanded to retract, the HARP
maintains its shape in three-dimensional space. The most
proximally referenced link moves backwards into a position
that is not tracked by the Kalman state vector while the link
one step ahead moves into its place and assumes the role
of the starting link of the Kalman state with transformation
matrix T0. The distal link also theoretically moves into the
position of the link preceding it. AssumingM is the length
of the state vector at time-stepk, the motion model for
retracting is,

fr(Xk) =
[

I(M−2)×(M−2) 0(M−2)×2

]

Xk.

The length of the state is reduced by two because the number
of links tracked by the Kalman state is reduced by one.

D. Steering Motion

When the HARP is insteering mode, all of the links
preceding the distal link in the state space are restricted
from moving because an inner mechanism is locked into
assuming the current shape (see [11] for details). This means
that actuating the three cables that run through the entirety of
the snake will theoretically control just the orientation of the
distal link. Thus, by pulling on these three cables in different
amounts with the proximally mounted motors, the pose of
the distal link will change.

We have formulated a steering model that determines the
angle offsetsφN−1 andθN−1 of the distal link relative to the
link preceding it based on the cable lengths, whereN is the
number of links we are tracking in the Kalman state vector,

θN−1 = arctan

(√
3(2c2 + c1)

3c1

)

(4)

φN−1 =

∣

∣

∣

∣

arcsin

(

−c1
CR cos(θN−1)

)∣

∣

∣

∣

. (5)

For this model,CR is a radius term that depends on the sepa-
ration of the cables and (c1, c2) are the measured differential
lengths of each of two cables running down the robot, relative
to the positions that the cables were in after advancing. The
valuec3 associated with the third steering cable in the robot
does not appear in this model because it is geometrically a
function ofc1 andc2 and is therefore redundant information.
The derivation of this model is omitted for brevity but we
note that it is based completely on the geometry of the distal
link of the robot. An interpretation of this steering model is
as follows: 1) the angle at which the link will be oriented
depends on which cables you pull tighter and 2) the extent
that the link will be angled depends on the amount we pull
on the cables. We again refer to Fig. 4 for a depiction of the
angles that are affected by the actuation of the cables.

From the measured cable lengths, which are obtained from
encoders on the actuated motors, we can obtain the new angle



offsetsφN−1 and θN−1 of the distal link of the robot using
Eqs. 4 and 5. We use these updated values to compute the
change in angles from the previous time step, stored as∆φ

and∆θ, and then formulate the following motion model for
steering the HARP,

fs(Xk) = Xk +
[

0T(M−2)×1, ∆φ, ∆θ
]T

.

E. Measurement Model

The sensor we are using for image-guidance is a magnetic
tracking sensor situated at the distal end of the snake robot.
The device we are using is the trakSTARTM (Ascension
Technologies, Burlington, VT, USA), which can measure the
6-DOF pose of a sensor in three-dimensional space. We insert
the tracker into one of the tool channels of the HARP.

While the tracker is designed for 6-DOF pose estimation,
only 5 degrees of freedom are useful in our application. This
is because the tracker must be inserted into the HARP such
that it can be removed easily for exchanging tools, and thus
the roll parameter of the tracker is free to rotate within
the working channel. The measurement therefore directly
observes five elements of the pose of the distal link of the
robot, and we can formulate the measurement model as,

h(Xk) =
[

pTN−1, αN−1, βN−1

]T
, (6)

wherepN−1 is the position of the distal link, as in Eq. 2, and
(αN−1, βN−1) are the yaw and pitch of the distal link. All of
these parameters can be extracted fromTN−1(Xk), which is
computed from the stateXk.

F. EKF Formulation

In this paper we are introducing a method to estimate
the state of the HARP given the measurements obtained at
the distal tip by a magnetic tracker. Because we have well
defined motion models and a forward kinematic measure-
ment model, it is reasonable to formulate this filtering task
in the framework of a Kalman filter (specifically an extended
Kalman filter because of nonlinear models). The purpose of
using a filter to estimate the state is that the motion and
measurements are subject to noise and disturbances.

The first step of our EKF formulation is to initialize the
estimate of the state. To do this, we begin an experiment
with the snake robot completely retracted with the magnetic
tracker in the distal link, which also happens to be the
only link in the Kalman state. A depiction of the state
of the system is shown in Fig. 6-(a). In this situation, a
single magnetic tracker measurement directly measures the
5-DOF pose of the first link in the Kalman state. We can
therefore initialize the mean and covariance matrix of our
EKF implementation as follows,

X̂0|0 =

[

z0
0

]

, P0|0 =

[

R 05×1
01×5 σ2

γ

]

,

wherez0 is the initial sensor measurement which is modeled
according to Eq. 6. The roll parameter in the initialized mean
is set to zero because we do not yet have enough information
to set a value for this element and thus we must initialize

T0 T1T0

a) b)

Fig. 6. This shows the first two steps of our initialization process for the
Kalman filter.

the roll arbitrarily. For the covariance initialization,R is the
uncertainty in the sensor noise andσ2

γ is a variance value
chosen by the user that models the large initial uncertainty
in the roll parameter of the state.

After this first measurement, we advance the robot one step
and evolve the mean of the filter based on the motion model
in Eq. 3. As for the covariance, we add a small amount of
noise to represent the fact that parameters may be disturbed
through the actuation of the cables. The state of the robot
after advancing is depicted in Fig. 6-(b). The new estimate
becomes (̂X1|0,P1|0). The reason for advancing the robot an
extra step before any steering takes place is that it simplifies
the formulation of our filtering method because our steering
model from Sec. III-D is defined for at least two links.
After the robot advances, another measurement is acquired
from the magnetic tracking sensor and the standard Kalman
measurement update is applied using the measurement model
in Eq. 6. The new estimate then becomes (X̂1|1,P1|1).

After this initialization procedure, we can subsequently
rely on the motion and measurement models defined in this
section to predict and update the EKF in real-time using the
well known Kalman prediction and update equations. We
note that we add prediction noise (to the variances of the link
angles) after each steering command. One difference between
our filtering scheme and a conventional EKF implementation
is that the prediction step that we perform at any given time-
step will depend on the mode that the robot is in (steering,
advancing, or retracting). The overall algorithm for our EKF
implementation is described in Alg. 1.

Algorithm 1 Snake Shape Estimation Algorithm

1: (X̂1|1, P1|1) ← initializeStateEstimate()
2: for k ← 2 to∞ do
3: if mode = steer then
4: (X̂k|k−1,Pk|k−1) ← steer(X̂k−1|k−1, Pk−1|k−1, uk)
5: else ifmode = advance then
6: (X̂k|k−1,Pk|k−1) ← advance(̂Xk−1|k−1, Pk−1|k−1, uk)
7: else
8: (X̂k|k−1,Pk|k−1) ← retract(X̂k−1|k−1, Pk−1|k−1, uk)
9: end if

10: (X̂k|k, Pk|k) ← correctionStep(̂Xk|k−1, Pk|k−1, zk)
11: end for

IV. OBSERVABILITY OF SHAPE ESTIMATION

To achieve shape estimation, we are estimating the joint
angles of a high degree of freedom snake robot with only
a magnetic tracker that measures the pose at the distal tip



of the robot. To support our claim that this methodology is
sufficient for shape estimation, we will introduce here an
analysis of the observability of the filtering problem defined
in Sec. III. Observability is a measure of whether the state
of a system can be obtained from the system outputs (mea-
surements) [14]. For this analysis, we are using linearized
models to construct the observability matrix because it is
sufficient for revealing the conditions under which successful
estimation of shape for the HARP is possible.

As discussed in Sec. III-F, we initialize the Kalman
estimate when the robot is completely retracted. At this point
in time, we receive an initial sensor measurement,z0. Based
on the measurement model in Eq. 6, we can define the initial
observability matrixO0 as follows,

O0 =
∂h

∂Xk

(X̂0|0) = [I5×5, 05×1]← rank(O0) = 5,

which has a rank of only5 when the length of the state is6.
As expected, the roll parameter is not observable with this
initial measurement.

According to our initialization procedure defined in
Sec. III-F, we then advance the snake one link forward. Due
to the inherent design of the snake robot, we know that the
valuesθ1 andφ1 will be equal to zero when there is yet to be
actuation from steering. Thus, we can treat our knowledge
of these two values as a hypothetical measurement with the
model hadv(Xk) = [θN−1, φN−1]

T . A new observability
matrix can be written as follows,

O1 =

[

O0 05×2
∂hadv

∂Xk

(X̂1|1)

]

=

[

O0 05×2
02×6 I2×2

]

← rank(O1) = 7.

At this point, the Kalman filter has8 parameters in the state
vector, but the rank of the observability matrix is only7.
The roll of the initial link is still not observable given the
measurements we have obtained.

Finally, after the robot has been initialized, the second
link can be steered by actuating the cables of the robot. The
motion model in Sec. III-D defines the orientation change of
the distal link when a steering command[∆φ,∆θ] is applied
to the system. After steering, a third component can be added
to the observability matrix,

O2 =





O0 05×2
02×6 I2×2
H2F2



← rank(O2) = 8,

whereH2 andF2 are linearized Jacobians,

H2 =
∂h

∂Xk

(X̂2|1), F2 =
∂fs

∂Xk

(X̂2|1).

The rank ofO2 is equal to8 as long as∆φ is unequal to
zero. The significance of this analysis is that as long as we
steer the robot after advancing the link, we can observe the
roll of the system. This is expected because by moving the
distal link so that it is off axis, we can observe the direction

Ground Truth

Estimate

Fig. 7. Data from an experiment we performed in the lab, for which we
recorded ground truth shape data (solid line) to compare withour shape
estimation algorithm. The average error for a link location was 2.98mm.

in which the robot steers and thus we can determine the
orientation of the coordinate frame of the robot.

Lastly, once the 8 parameters that define the state of the
first two links are observed, the motion models will precisely
define the evolution of the state based on motion inputs.
Thus, according to the models we present in this paper, the
entire shape of the robot is fully observable.

While this is a significant result for supporting the use of
this filtering method, the observability analysis we present
here assumes perfect models in which the robot is truly a
follow-the-leader device that maintains its shape. In reallife,
though, the shape estimate may be affected by noise and
external forces. Thus, to evaluate the realistic performance
of our filtering scheme, we will discuss two experiments in
the next section.

V. EVALUATION

A. Experiment I

The first experiment that we will discuss is a bench-
top test in which we drove the snake robot in an S-curve
configuration, turning maximally to the right and then max-
imally to the left. The shape of the curve can be seen in
Fig. 7. The magnetic tracker (trakSTARTM from Ascension
Technologies, Burlington, VT, USA) remained at the tip of
the robot throughout the experiment and was used to update
the shape of the robot with the filtering algorithm in Sec. III.

At the end of the experiment, we fixed the shape of the
snake and subsequently pulled the magnetic tracker through
the working channel to record a trail of data points that we
could post-process as a ground truth path. We compared our
shape estimate to the ground truth with an average error
of 2.98mm and a maximum error of 6.74mm between the
robot links and the corresponding nearest point on the ground
truth path. The result is shown in Fig. 7. We attribute the
accuracy of this result to our estimation algorithm as well as
the robot’s inherent ability to preserve its shape as a follow-
the-leader device. We note that, while this is a promising
outcome, we believe the algorithm has the potential for more
accurate estimation. We argue that additional tuning of noise
parameters could improve performance.

B. Experiment II

The second experiment we performed (Experiment II)
involves a live animal experiment in which we tested our own
image-guidance software while navigating the HARP robot
along the epicardial surface of a porcine subject. One of the
goals of this experiment was to investigate the feasibilityof
performing epicardial ablation with the HARP robot with a
subxiphoid approach. In Fig. 8, we show the HARP next to



Fig. 8. Here we show the subxiphoid incision that is made for the robot
to access the epicardial space.

the single-port incision. We note that the photo in Fig. 8 was
taken during a previous experiment.

During Experiment II, we operated the robot semi-
autonomously, which meant that the robot steered itself along
a prescribed path to a target location. For this experiment,
we tested our shape estimation algorithm and show the
qualitative result in Fig. 9. Although we unfortunately do not
have ground truth data for this experiment, we have reason
to believe that the filtering algorithm we are presenting in
this paper performed well in estimating the shape during
this animal trial because the resulting images show the robot
correctly configured in just the right shape so as to lie
between the surface of the heart while also lying beneath
the rib cage of the porcine subject.

VI. CONCLUSION

The contribution of the work presented here is a novel
filtering method for estimating in real-time the shape and
pose of a highly articulated surgical snake robot. Our algo-
rithm combines new kinematic models of the motion of the
robot with measurements from a magnetic tracking sensor in
a custom EKF framework. We have shown that the system
is fully observable under appropriate motion, which supports
the use of this algorithm in experiments.

The advantage of the proposed approach is that we can
leverage existing magnetic tracking technology that would
already be used for estimating the pose at the tip of the
surgical robot to also determine the full configuration of the
snake. In this case, the determination of shape is important
for implementing a fully representative 3D visualization.

We have shown promising results, both with bench-top
testing and animal experiments. In one experiment, the
HARP was driven semi-autonomously along a predefined
path using feedback from our EKF implementation. This is
an exciting result, for it demonstrates both the capabilities of
the robot as well as the ability of our algorithm to accurately
filter the configuration of the robot in real-time.

An additional benefit of our shape estimation algorithm is
that it can be used to determine if there is any twist along
the length of the HARP. Extracting this information in real-
time during an operation can help rectify video and right the
joystick inputs for more intuitive control of the robot.

Unfortunately, it is worth noting that if the robot is
interacting with deformable tissue and/or moving tissue (in
the case of a cardiac experiment), the estimation of shape
may be adversely affected. For this problem, more advanced
models are required, which is the subject of future work.

Fig. 9. This is a result from an experiment in which we semi-autonomously
navigated the HARP along the epicardial surface of a porcineheart and used
our shape estimation algorithm for visual feedback.
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