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Abstract— This paper uses KLD-based (Kullback-Leibler
Divergence) Monte Carlo Localization (MCL) to localize a
mobile robot in an indoor environment represented by 3D
texture maps. A 3D texture map is a simplified model that
includes vertical planes with colored texture information asso-
ciated with each vertical plane. At each time step, a distance
measurement and an observed texture from an omnidirectional
camera are compared to the expected distance measurement
and the expected texture according to each hypothesis of the
robot’s pose in an MCL framework. Compared to previous
implementations of MCL, our proposed approach converges
faster than distance-only MCL and localizes the robot more
precisely than SIFT-based MCL. We demonstrate this new
MCL algorithm for robot localization with experiments in
several hallways.

I. INTRODUCTION

Localization is essential for mobile robots navigating in
a given environment. With a localization system, a robot is
capable of inferring its pose in a map based on observations
made with onboard sensing: odometry, proximity sensors,
cameras, etc. After determining its pose, a robot can then
plan paths to target locations and can avoid known obstacles.

There are two generalized methods for a mobile robot to
perform localization in a given map: metric localization [1]—
[3] and topological localization [4], [5]. Given a 2D map, the
result of metric localization is a position (x,y) and heading
6 in the map. For topological localization, on the other hand,
the result of localization would specify the place or region
where the robot is located. In this paper, we explore a metric
localization method that models the environment with 3D
texture maps.

Probabilistic methods, such as the extended Kalman filter
(EKF) and particle filtering (PF), are important for recur-
sively solving for the most likely estimate during localiza-
tion [6]. The EKF models the robot’s possible pose as a
Gaussian distribution while a nonparametric method, such
as a particle filter, does not restrict the model to any specific
distribution. In addition, a particle filter is well suited for
solving the problem of global localization because it is
inherently testing multiple hypotheses.

When a robot moves, Monte Carlo Localization (MCL) [7]
gradually removes unlikely robot pose hypotheses in a par-
ticle filter framework by comparing sensor measurements
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with expected measurements. According to the given map,
proximity sensors [2] or cameras [3], [8] are used to perceive
the environment. A texture map is a metric map including
environmental appearance. Recent work has demonstrated
that a texture map can be generated by either fusing a camera
and a 3D laser range finder [9] or using a RGBD sensor, such
as Kinect™ (Microsoft Co., Redmond, WA, USA). However,
few methods [10] have discussed the technique of localizing
in a texture map.

This paper adopts KLD-based (Kullback-Leibler Diver-
gence) MCL for localizing the robot in a given 3D texture
map. The 3D texture map is a simplified model that includes
vertical planes and textures associated with each vertical
plane. During localization, a measured distance and an ob-
served texture are obtained from an omnidirectional camera
and then compared to the expected distance measurement
and expected texture for each hypothesis of the robot’s pose.
The distance is extracted from an image by making certain
planar assumptions about the environment. Compared to
prior work on MCL, the proposed approach converges faster
than a distance-only MCL implementation and localizes the
robot more precisely than a SIFT-based MCL approach. In
addition, all of the hypotheses are better localized around
the true pose using our proposed method than with SIFT-
based MCL. This is because the expected observed texture
can be generated for each possible pose in the 3D texture
map, while expected SIFT features can only be generated
from the set of positions that were used to originally map
the space.

II. CONSTRUCTION OF A 3D TEXTURE MAP

A 3D texture map is a 3D geometric model of an
environment along with its appearance. In this paper, the
indoor environment is modeled as a simplified 3D texture
map [11] by using an omnidirectional camera. The simplified
3D texture map consists of vertical planes on flat floors with
a pixel-based colored texture associated with each vertical
plane. The vertical planes are a basic unit representing walls
in structured environments.

A vertical plane is obtained by detecting the boundary pix-
els between a wall and the floor in an omnidirectional image
and fitting the pixels with a line. By assuming the color
change on the boundary is apparent [2], [12], the boundary
pixels can be detected by an edge detection algorithm [13].
The relative horizontal distance d between a boundary point
and the robot is calculated with a distance sensing function
d = f(p), where p is the image distance between the
boundary pixel and the image center. The azimuth angle ¢ of
a boundary point can be computed from the coordinate of the



corresponding boundary pixel in the image. The positions of
all boundary points forms a 2D map. Lines are detected and
endpoints are stored as the positions of the vertical planes.

Fig. 1 shows an example for finding the position of
a vertical plane. The relative horizontal distance and the
azimuth angle of all boundary points on P; P, in Fig. 1(a)
are obtained when all of the boundary pixels on the red arc
p1p2 in Fig. 1(b) are detected.
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(a) The projection of texture from a
wall onto the image plane.

(b) Pixels projected from texture on an omni-
directional image.

Fig. 1. An overview of our 3D texture map construction.

The observable height of a vertical plane is required in
order to correctly map the pixels from an omnidirectional
camera to a texture corresponding to the vertical plane
because the complete vertical plane may not be observed.
Instead of finding the maximal observable height in each
azimuth angle, the heights along the same tilt angle ¥ax
under different azimuth angles are computed. The tilt angle
Ymax corresponds to a maximal observable view which is
represented as an inscribed circle of maximal radius ppyax
centered at the image center, as seen in Fig. 1(b). Since
all pixels on the maximal radius p,,x are projected from
points along the same tilt angle ¥, but in different relative

distances, the heights of these points are different. A height
sensing function . = ¢(d) is used to compute the height
of a point along the tilt angle ¥,.x by giving the relative
horizontal distance d. In Fig. 1(a), the maximal observable
height of the vertical plane is marked as P3P and P Fs.

When the observable heights of a vertical plane and the
position of the vertical plane are available, all pixels between
the boundary pixels and maximal radius pp,.x are mapped
to the vertical plane. Texture above a boundary point is
extracted from the omnidirectional image captured on the
nearest pose to the boundary point, because a same vertical
plane may be projected on many omnidirectional images.
The texture mapping from many omnidirectional images to
a vertical plane will be detailed in Section II-C.

A. Distance Sensing

The distance sensing function calculates the relative hor-
izontal distance between the robot to a boundary point. In
a flat environment, boundary points from different distances
are projected on different pixels in the image, as an example
shown in Fig. 2.
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Fig. 2. Distance sensing and height sensing with an omnidirectional camera
(side view).

The distance sensing function is obtained by fitting many
collected data points which associate true distances with
image distances. We chose a 4th order polynomial equation
to represent f(p) as the selection in [14]. The minimal
and maximal measurable distance are 88.9cm and 330.2cm,
respectively.

The maximal and minimal measurable distances restrict
the location of a boundary pixel within an annulus with
inner radius of p,;, and outer radius of p,.x, as the region
between the two dashed circles in Fig. 1-(b).

B. Height Sensing

The height sensing function h = g(d) is used to compute
the height of a point along the tilt angle ,,« by giving the
relative horizontal distance d. The height sensing function is
a linear function g(d) = ag + a1d, where ag is the height of
the mirror focus and a; is tan(vmax) in Fig. 2.



C. Texture Mapping

Instead of blending many textures from images, texture
above a boundary point is extracted from the omnidirectional
image which is captured at the nearest pose to the boundary
point, due to the smallest error between the computed relative
horizontal distance and the real distance. Fig. 3 shows an
example of texture mapping for a vertical plane from two
omnidirectional images. A vertical plane is observed at both
pose A and B. Given the boundary points of the vertical
plane, as the points along P{® PB, the maximal observable
heights of the vertical plane at pose A and pose B are
(P1,aP2,4 and P aP5 4) and (P, pPsp and Py pFs p),
respectively. The textures, as the regions marked with di-
agonal lines in Fig. 3, above boundary points along P2 PH
and above boundary points along Pf PP are extracted from
the omnidirectional images captured at pose A and on pose
B, respectively.
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Texture mapping of a vertical plane from two omnidirectional

Fig. 4 shows the constructed 3D texture map on Floor A
of Newell-Simon Hall (NSH) at Carnegie Mellon University.
White walls and brown doors are two components in this en-
vironment. The black part on the top includes the unmapped
region of the textures for the vertical planes and the ceiling.
The gray part on the bottom is the carpet.

Fig. 4. This is an example of a textured 3D map constructed by a mobile
robot with an omnidirectional camera.

III. KLD-BASED MONTE CARLO LOCALIZATION IN A
3D TEXTURE MAP

MCL [7] is a typical approach for mobile robot global
localization based on a particle filter. Each particle in MCL
represents a hypothesis for the robot’s pose: (z,y,0). After
the robot moves, each particle is predicted based on a motion
model with the control input. The expected measurement
from the predicted pose of each particle is then compared
to an actual measurement to decide the weight based on a
measurement model. Particles are resampled according to the
weights and the above procedure is repeated. Eventually, the
particles converge to a region around the true robot’s pose if
the motion and measurement models are designed properly.

A large amount of particles are typically used when the
environment is large in order to have at least one particle
initialized near the robot’s true pose. Since large numbers
of particles become computationally intractable, KLD [6] is
used to adaptively reduce the number of particles in order to
speed up MCL.

A. Motion Model

The motion model describes the relationship between
odometry and the robot’s true motion. A 10% error in
odometry is assumed for the noise in the motion model, as
follows,

x(k+1) (k) + N(Ax,0.01A22)
y(k+1) | = | y(k) +N(Ay,0.01A9%) |, (1)
z(k+1) 0(k) + N(AH,0.01A62)

where A (y, 0%) stands for the normal distribution with mean
1 and standard deviation o.

B. Measurement Model

The similarity between two measurements is computed in
the measurement model. The weight of a particle is decided
by the similarity between the expected measurement of a
particle and the true measurement.

Distance measurements and the observed texture are used
to localize the robot in the 3D texture map. The weight of
each particle can be computed by weight = §d§f<‘“, where
&q is the similarity of the distance measurements, &; is the
similarity of texture, and Ky is a weighting ratio of the
observed texture over the distance measurements. A larger
K4 indicates that the measurement model trusts the texture
more than the distance measurements. K4 is at least 1.

The similarity of distance measurements &, is computed
with a Mahalanobis distance function. The diagonal elements
of the covariance matrix in the Mahalanobis distance func-
tion represent the uncertainty of each distance measurement.
The uncertainty is proportional to the magnitude of the
distance in most cases. However, because some distance mea-
surements are unavailable due to the maximal measurable
distance or the undetected boundary pixels in the image,
the corresponding diagonal elements are set to a very large
number. In addition, a particle is removed if the number
of valid distance measurements is less than a predefined
threshold.



(a) Actual observed texture.

Fig. 5. An example of the similarity of texture.

The similarity &; between the expected texture and the
observed texture is computed by a pairwise pixel comparison

as,
# pizels in similar color

& 2

# total pixels

A predefined threshold determines the maximal color dif-
ference for two pixels. Also, a normalized color space is
adopted to alleviate the effect of illumination. Given a
particle, the expected observed texture for the particle’s pose
can be projected from the 3D texture map. First, the relative
horizontal distances to all neighbor boundary points are
found. With the relative horizontal distance of a boundary
point, the boundary pixels in the image plane can be found
using the distance sensing function. The maximal observable
heights of the vertical plane are calculated with the height
sensing function. The texture on the vertical plane in the
3D texture map can then be projected to the corresponding
pixels on the image plane as the expected observed texture.
Fig. 5-(a) and (b) provide an example of an observed and
expected texture in a panoramic view. The black pixels in
Fig. 5(b) indicate the unavailable texture.

IV. EXPERIMENTS

This section shows the performance of the localization
approach with three experiments: pose tracking, global lo-
calization, and the kidnapped robot problem. Furthermore,
the proposed approach is compared to distance-only MCL
and SIFT-based MCL.

A. Pose Tracking and Global Localization

Pose tracking and global localization differ in whether the
robot’s initial pose in the map is given. With a known initial
pose, the pose tracking tests if a localization approach can
keep track of the robot’s pose after the robot moves and
accumulates error. On the other hand, global localization tests
if the robot can eventually localize its pose in the map when
the initial pose is unknown.

The experiments for pose tracking and global localization
are conducted on the first floor and basement floor A of
New Simon Hall (NSH) at Carnegie Mellon University. The
experiments spanned the red regions shown in Fig. 6. The
size of both regions is approximately 3556-by-1524 cm?. The
trajectory for the test is drawn as a blue line in Fig. 6(a).
Odometry and 29 omnidirectional images are stored to test
MCL in the texture 3D map that was created beforehand.
K is set as 2 for this experiment.

(b) Expected observed texture.

(b) First floor.

Fig. 6. Floor plan experiments
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(a) After 5 resampling
steps.

(b) After 14 resampling
steps.

Fig. 7. Global Localization and pose tracking using MCL in the 3D texture
map.

The results of global localization and pose tracking are
shown in Fig. 7. In the beginning, 65000 particles are spread
out on the first floor and floor A. After 10 resampling steps,
36245 particles remain and are located in the same hallway
near the true pose. After 14 resampling steps, the remaining
number of particles is 8409 and all of the particles converge
to a local region around the real robot’s pose. The local
region is modeled as an ellipse with major axis of 106.7
cm and minor axis of 81.3 cm. The pose of the robot is
continuously tracked until the robot stops.

B. The Kidnapped Robot Problem

The test of the kidnapped robot problem evaluates the
ability of a localization approach to recover from a failed
localization procedure due to a noisy measurement or an
unmodeled disturbance. Compared to global localization, the
kidnapped robot problem is more difficult because the robot
has to detect the instance that it is “kidnapped”, and then it
needs to relocalize itself in the environment. In our approach,
a kidnapped robot is detected when the similarity of the
measurements from all particles is low. This would not be the
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Fig. 8. Solving the kidnapped robot problem with the proposed approach.

case normally because a high similarity would be expected
from the true pose. After a kidnapped robot is detected,
the particles are reinitialization. [6], [8] propose different
methods to spread out the particles.

The trajectory for the test is shown as the two blue lines
in Fig. 6(b). The robot moves along the trajectory drawn as
the blue solid line and then is kidnapped and moved along
the trajectory drawn as the blue dotted line. 65000 particles
are spread out in the beginning on the first floor and floor A.
After 21 resampling steps, about 12000 particles are used to
track the robot’s pose. The kidnapping occurs between the
26th resampling and the 27th resampling. When the robot
kidnapping is detected, 12000 particles are used to track
the predicted pose and 53000 particles are spread out in the
environment randomly. The robot eventually finds the new
pose after 42 resampling steps.

C. Performance Comparison

To evaluate our method, we compared our performance
with a distance-only MCL implementation and a SIFT-based
MCL implementation.

1) Comparison with Distance-only MCL: We compare
distance-only MCL to the proposed approach in order to
demonstrate the benefit of introducing the texture. The same
distance sensing function and motion model described above
are used in distance-only MCL. The weight of each particle
is determined only by &;.

Table I shows the comparison. The trajectory for the test
and the omnidirectional images are the same as that used in
Section IV-A. Not all of the particles in the distance-only
MCL converge to the true pose after 29 resampling steps.
The localization error of the proposed approach is 60.4 cm.
Geometric similarity in the environment actually causes the

TABLE I
COMPARISON WITH DISTANCE-ONLY MCL

Convergence | Error | Size of Particles
Timestep (cm) (cm?)
Dist.-Only MCL Failed Failed Failed
Proposed Method 14 60.4 106.7x81.3

To Wean
Floor 4

Fig. 9. Environment for our experiment on the 4th floor of NSH.

slow convergence of the distance-only MCL implementation.
We attribute the faster convergence of the proposed approach
to the valuable information that color and texture can provide
for inferring a robot’s pose in a known environment.

2) Comparison with SIFT-based MCL: SIFT-based
MCL [3] is also compared to the proposed approach. The
same motion model in Section III-A is adopted and the
weight of each particle is computed as follows,

2
weight = { Nexp(~555)  (d > 7) 3)
N (d<7),

where N is the number of matched SIFT features between
the current view and the omnidirectional image captured
when originally mapping the space nearest to the particle; d
is the distance between the particle and the nearest pose; T
and o are both set as two times the minimal distance between
the two poses where omnidirectional images are captured.

Experiments were performed on the 4th floor of NSH,
as the red region shown in Fig. 9. The blue solid line
represents the trajectory where the robot acquired omnidirec-
tional images to originally build the map. Table II shows the
localization results of the proposed approach and SIFT-based
MCL with different o and without ¢ when the robot moved
in the trajectory drawn with a blue dotted line. The maximal
displacement between these two trajectories is about 91.4cm.

SIFT-based MCL fails to localize the robot when o is 13.5
cm. The reason for the failure is the nearly zero exponential

TABLE 11
COMPARISON WITH SIFT-BASED MCL

Error | Size of particles
(cm) (cm?)
SIFT-Based MCL(o = 13.5) Failed Failed
SIFT-Based MCL(o = 76.2) 204.7 239.6x102.9
SIFT-Based MCL(0 = 152.4) 150.4 311.5%99.6
SIFT-Based MCL(0 = c0) 139.5 314x106.7
Proposed Method 100.6 178.5x117.3




TABLE III
COMPARISON WITH SIFT-BASED MCL WITH DISTANCE MEASUREMENT

Convergence | Error | Size of Particles
Timestep (cm) (cm?)
Compared Method 13 57.9 156.5%90.2
Kags =1)
Compared Method 9 54.8 139.2x81.3
(Kgs = 2)
Compared Method 8 54.5 134.6x68.6
(Kas =3)
Proposed Method 21 62.3 116.8x83.8
K =1
Proposed Method 14 60.4 106.7x81.3
Kt =2)
Proposed Method 8 53.6 110.9x72.7
(Kat =3)

term in Eq. (3) due to a large d. When o increases to 76.2,
152.4, or even infinite cm, the particles successfully converge
to the real pose. Compared to the proposed approach which
localizes the robot successfully with the error of 100.6 cm,
the localization error of SIFT-based MCL under different
o is larger. The significance is that, unless tuned carefully,
SIFT-based localization can fail when the path performed by
the robot does not overlap well with the path that was taken
when the images were originally acquired for building the
map. Our method is not susceptible to this problem.

3) Comparison with SIFT-based MCL with Distance Mea-
surements: In one final experiment, SIFT-based MCL is
combined with distance measurements to compare with the
texture-based method of the proposed approach. The weight
of each particle is computed by weight = ;N5 where
K5 is the weighting ratio of number for matched SIFT
features over distance measurement.

The comparison is done in the same environment as the
experiment in Section IV-A in order to evaluate the per-
formance of SIFT-based MCL with distance measurements
when compared to the proposed approach under different
weight ratios. The localization result is summarized in Ta-
ble III. When a high weight ratio is adopted, the proposed
method is competitive with the SIFT-based MCL approach
that includes distance measurements with respect to the time
to convergence and localization accuracy. Additionally, both
SIFT-based MCL and the proposed approach converge more
quickly when the weight of each particle depends more
on the number of matched SIFT features and the observed
texture. However, the convergence speed cannot be further
improved by giving a higher weight ratio because the robot
is not close enough to distinct objects, such as a door, until
the 8th omnidirectional image is captured. The 1st and the
8th omnidirectional images are shown in Fig. 10.

V. CONCLUSION AND FUTURE WORK

This paper proposes a KLD-based localization approach
based on MCL in a 3D texture map. Both distance measure-
ments and observed textures are used to decide the weight of
each particle. The proposed approach converges faster than
distance-only MCL approach and localizes the robot more

(a) 1st Omnidirectional
Image.

(b) 8th Omnidirectional
Image.

Fig. 10. Two omnidirectional images during localization.

precisely than the SIFT-based MCL approach. In addition,
all of the hypotheses are better localized around the true
pose than with SIFT-based MCL. Future work will focus on
the localization approach in a map of 3D color point cloud
and how to reduce the computation time.
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