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Abstract— We present a novel method for enforcing nonlinear
inequality constraints in the estimation of a high degree of
freedom robotic system within a Kalman filter. Our constrained
Kalman filtering technique is based on a new concept, which
we call uncertainty projection, that projects the portion of the
uncertainty ellipsoid that does not satisfy the constraint onto
the constraint surface. A new PDF is then generated with an
efficient update procedure that is guaranteed to reduce the
uncertainty of the system. The application we have targeted
for this work is the localization and automatic registration
of a robotic surgical probe relative to preoperative images
during image-guided surgery. We demonstrate the feasibility
of our constrained filtering approach with data collected from
an experiment involving a surgical robot navigating on the
epicardial surface of a porcine heart.

I. INTRODUCTION Fig. 1. Our image-guidance system, shown here with multiplespdtawn

L. . . . for the robot. In this image, the robot is shown intersectirgsurface model
. Minimally invasive surgery (MIS) has become INCreassnq violating geometric constraints.
ingly popular in medicine due to shortened patient recovery

time and reduced risk of infection. The trade-off when

operating through a small incision, though, is that a toddyrgery because anatomical surface models can indirectly
cannot be viewed with direct vision, thus a surgeon mugrovide information about infeasible robot configurations
use a form of real-time medical imaging [1]-[4] during MISthat we can formulate as constraints when estimating the
to navigate a surgical tool to a desired anatomical locatiorstate of the system in a filtering framework.

An alternative method for Surgical guidance is to prOVide a The contributions of the work presented in this paper
virtualized rendered view of the operation for visual feedb  are: 1) the novel use of constrained filtering to correct the
(referred to as image-guided surgery), as in [5]. This méthqocalization and registration of a surgical robot, 2) a new
is typically based on registering a tracked surgical detice constrained filtering algorithm calleshcertainty projection
the coordinate frame of preoperatively reconstructedaserf 3) 3 pseudo-measurement update method to correct the state
models and then overlaying an image of the device on @timate of a nonlinear system after performing uncestaint
rendering of anatomical structures (see our implemenmtaio projection, and 4) an experimental result that demonstrate
Fig. 1). In practice, though, the localization and regisa the impact this methodology can have in improving the
of a surgical device can be affected by sensor noise, orgaggality of surgical feedback during MIS.
shifting, tissue deformation, and noisy imaging.

In the case of poor registration and localization during Il. RELATED WORK
image-guided surgery, a surgical tool may appear in a 19y, |mage-Guided Surgery and Registration
cation that is completely unrealistic, for example inside o . . . .
a cardiac surface model when the intervention is performed D_urlng MIS, a physician requires visual f_eedback _to
outside of the heart. Fig. 1 shows an example of exact avigate a surgical tool to a desired anatomical location.

this situation from an experiment that we performed with %hus, tger::- gr? man;l/tforms of Ir:ned|cal |m|ag|fr|1g that havg
highly articulated surgical robot called HARP [6], [7]. een adapted for real-time use. or example, TUOToscopy 1S

To improve image-guidance for more accurate feedback form of real-time X-ray that is commonly used [1], MRI

during surgery, we are introducing a new method of cor@nd CT [3], [8] have recently been extended to intra-opegati

strained Kalman filtering to recursively correct registrat use, and 3D ultrasound [9] is becoming a popular alternative

and localization parameters for a robotic system with knowHﬂ;?irt t:g?i:aelglio?vaig\yv ogrtahﬁ\i%:?ﬁ;glge Tvﬁg?g?)iiicegh;:]n?v
geometric constraints. This is applicable to image-guide R icomp y
and/or emit significant radiation.
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live data, such as in [10]. The goal of image-guided surgery covarianceCy, thuss ~ N (§g, Cp). Also, suppose we have
to produce a 3D visualization that overlays a rendering ef tha set of L linear constraints that define feasible states,
surgical tool alongside the anatomical structures of egter T _
Commercial examples of this type of sensor-guided feedback $is =2 o ¢ =1..1L @

are Ensite NavX (St Jude Medical, St Paul, MN, USA) angvhere eachy; is a scalar and each; is anM x1 vector. We
Carto XP/CartoMerge (Bio-Sense Webster, Diamond Bapote that, if desired, a “less-than” constraint can be ddfine
CA, USA), which are used for cardiac mapping and ablationn the above formulation by negating the and «; terms.

To properly fuse pose estimates from a tracker with The objective of our uncertainty projection algorithm is to
anatomical surface models, the two frames of reference mygidate the state estimaté,, Cy) given the inequality con-
be registered. A common method is to use an iterativgraints. Unfortunately, there is no efficient way to apply a
closest point (ICP) method [11]. Unfortunately, this carpf the constraints together. Thus, as in [20], our formafati
be computationally intensive in the case of aligning larggill apply each constraint in Eq. 1 one-by-one in sequence:
point clouds [12]. Another method uses ultrasound to registthys the estimatés;, C;) obtained after applying the-th
a surgical tool inside of a heart model using a particlgonstraint will be used as the new prior when applying the
filter [2]. The benefit of our work over these other approacheg 1 1)-th constraint. The result of our algorithm will be a

is that our algorithm is applicable to higher dimensionahew estimates;, C;) that will better approximate the true
systems (e.g., a surgical snake robot) and our system WHDF given the constraints.
automatically adjust registration and localization pagtams
during an experiment if something changes. B. Algorithm
B. Constrained Filtering To compu_te £, C)) .given the associatedth constrain'.[ in
Eq. 1, the first step is to transform the state space in such

Constrained filtering is the problem of correcting or ony \yay that the constraint is decoupled from all elements of

straining the Kalm.an update or Kalman prediction to acpourﬂﬁe transformed state vector except for the first elemeris Th
for known constraints on the state vector [13]. In [14], STMO |\ othod is similarly used in [20], [21] for PDF truncation. We

a}nd _Chif"‘ pre'sent.a method fequalitycqnstrained quman perform this transformation by defining the random vector,
filtering in which linear constraints are incorporated ittie

Kalman filter update by projecting the unconstrained egéma y = VW Y2TT (s —5.4), 2)
pnto the constraint hyperplane. Another popular method y ~ N(Onrrzr Inranr),
is to use a pseudo-measurement approach that simulates
a perfect measurement to enforce equality constraints #hereZ’ andW are obtained from the Jordan canonical de-
the Kalman filter update step [15]-[17]. In [18], [19], it cOmposition of the prior covarianc€(, = TWT™) andV
was shown that the pseudo-measurement update methodSigbtained by using Gram-Schmidt orthogonalization [20],
actually equivalent to the state projection method fronj.[14[24] to find the matrix that satisfies,

Another related problem, which more closely relates to 12T 0 _ T \1/2
this paper, isinequality constrained Kalman filtering [20]- VW g = [ (6] Ciadi) 0 .. 0]
[23]. One method for inequality constrained filtering is toThe significance of this transformation is thais both zero
simply apply one of the aforementioned equality constiinemean and white and the constraint only applies to the first
filtering algorithms in order to shift the estimate back intcelement ofy. A new constraint equation can thus be written,
a feasible state. This process, though, would not place the
mean of the filter near the true mean of the feasible region [ Lo . OTJ y 2B ®)
in the state space. Instead, several researchers suggest th Bi = ((;Tc_qjil(;;ﬁ
use of a PDF truncation method that updates the filter with : ! )
the mean and covariance of the region of the PDF that lidecause the first element giss the only constrained element

outside of the constraint hyperplane [20], [21]. of this transformed problem, we have reduced multivariate
constrained filtering to a simpler PDF update problem for
Il UNCERTAINTY PROJECTION a scalar Gaussian random variable (mean equal to zero and

Inequality constrained filtering seeks to eliminate infeavariance equal to one) that is subject to a scalar constraint
sible states from the PDF of a Kalman filter, which can
improve the accuracy of the state estimate and reduce un-
certainty. In this section, we will introduce a new algomith

' . Projected  _,
> Feasible Uncertainty

that we calluncertainty projectiorthat can be used to update iieasible <1 “ Disributon

the PDF of a Gaussian random vector given a sdinefar ﬂ

constraints. In Sec. IV, we will then extend our solution to o

nonlinear constraints. 2 b)

A. Problem Definition Fig. 2. In (a), a normally distributed random variable is shavith a scalar

. constraint that defines the feasible and infeasible regimnéb), we show
Suppose we have a prior PDF of &fix 1 state vectols  our uncertainty projection method which projects the tailifeé Gaussian

parameterized by a Gaussian distribution with méamnd onto the constraint and then computes the new mean and variance



Constraint ——> Constraint —— _ Constraint — >/

Fig. 3. Shown here is an example of the uncertainty projectiethod we use for updating the mean and variance. In (a) we dt@wrior distribution
and the constraint. In (b) we show the decoupled transforrtegd and its uncertainty projected solution. In (c) we shbe tesult from (b) transformed
back into the original state space.

To update this one-dimensional PDF, we project the por- The significance of the example in Fig. 3 is that the
tion of the probability mass that is less than the constraimesulting uncertainty ellipse qualitatively bounds thgioa
onto the constraint itself and then compute the new mean anfithe PDF that is deemed feasible by the constraint equation
variance, see Fig. 2. The motivation for computing the newhile successfully discarding the majority of the infedsib
estimate this way is that it best preserves the contribusfon region of the PDF. We note that our efficient algorithm
the probability mass less than the constraint. To perfoim thcan be used for any set of linear constraints imposed on
uncertainty projection update, we can write the definitibn oa multidimensional Gaussian distribution.

expectation, as follows,
IV. NONLINEAR INEQUALITY CONSTRAINED FILTERING

Bi o0
Wi = b 7TZ2dz +/ Lfszzci,z In this section, we will introduce a second algorithm that
*ﬁoo V2 ) . Vem ) will extend our uncertainty projection algorithm to syseem
o — / (Bs — 1) e#dz+/ (z—p) e#dz. with nonllngar consFralqts, which is particularly applicable
oo V27 . \or to our surgical application.

This formulation involves two integrals: one that is asateil A Problem Definition

with the infeasible region and one that is associated with th I N .
feasible region, withg; being the point of the constraint. The Suppose that a Kalman filter is es.tlmatmg a system V\.”th an
’ ! ) Nx1 state vector. After each prediction, the Kalman filter

solution that we have derived by evaluating these 'megralsbroduces an estimatéi .., Fy,) and after each correc-

. :_QW_wie%gm tion, the Ka_lman _filte_r produces an estime(té_k‘k,Pkw)._
1 -2 1 8, The constrained filtering _problem that we define here is to
i =——e 2z + iﬁi [1 + Erf <\f>} (4) update the corrected estimatey,;, Pr,) given a set ofL
i 2 constraints. This is similar to our formulation in Sec. I,
o2 = % [ 267 1 (2442 m+ENf (@2) _ﬁgwErf<ﬁi 21 | except suppose now that the constraints are nonlinear,
i V2 o alzy) > a i =1..L )

can then be transformed back into the original state space

by reversing the transformation that originally whitenae t 11 this formulation, we assume that a known functicy,)
noise to decouple the elements of the state vector exists that will map the state vector to a space in which the

" constraints are linear, which we call tbenstraint-spaceFor

g = [m 0 .. 0] many applications, the constraint-space should be chasen t
Y, = diag(af, 1,..,1) be the workspace of the robot, for this is where the system
s = TWYAVTh + 8 4 will be limited by geometric constraints.

c;, = TWYvTs,yw'/2rT, B. Algorithm

In summary, through the update process above, the mean The_ first step in our_constrgined filtering al_gorithm is
and covariance’; are updated recursively froifs,;,C; ) t© Project the Kalman filter estimatgiy, Py x) into the
given thei-th constraint equation in Eqg. 1. constraint-space with the following projection,

The example in Fig. 3 illustrates our uncertainty projactio A n _ T
method. In Fig. 3-(a), a constraint tells us that the true So=a(@un),  Co = ArPirdi,
state must lie to the right of the dotted line. The algorithnwhere A, is the Jacobian of the nonlinear functiaitzy)
transforms the state according to Eq. 2, the result of which linearized about the current estimatg,.
shown in Fig. 3-(b), and a new estimate, labeledgsY:;), After performing this projection, the problem has been cast
is computed using Eq. 4. Lastly, the estimate is transformedto a form that is solvable with our uncertainty projectaln
back to the original state space, resulting in an updategbrithm for linear constraints, which we discussed in Skc. |
estimate, shown in Fig. 3-(c). After plugging the estimatesy, Cp) into our uncertainty



Fig. 4. This is the HARP robot that we used for our constraffiéefing  Fig.5. This is an example of our constrained filtering methademing the
experiments. estimated configuration of the HARP surgical robot based erctimstraints
imposed by the surface model.

projection algorithm along with the constraints, the resul
would be the updated estimat&;,, Cy,). This result still lies We first force the resulting covariance of the pseudo-
in the constraint-space, but now has reduced uncertainty ameasurement update to satisfy Eq. 6. To do this, we take
is likely a better estimate of the PDF given the constraintsthe standard Kalman covariance update and then both left
To update the actual Kalman estimate, we need to modifnd right multiply by A,
the PDF so that its projection into the constraint-space cor AT
. . . . P A =

responds to the new estimated uncertainty in the constralnlA’“ k|

L ; . 1
space. In most apphca_tlons, unfortunately, the dimension Akpk\kAg*Akpk|kAg(AkPk|kAz+R) AkPk|kA£7
the constraint-space will be lower than that of the statespa S
This means that such a projection is not uniquely definedhich can be simplified, as follows,
nor easy to compute. To solve this problem, we mtroduge a C1 = Co— Co (Co + R)’l Co. @
covariance update and a mean update based on applying a
pseudo-measurement. Our algorithm is described in Alg. The unknown in Eq. 7 is the covariance of the pseudo-

measuremenk. The closed form solution that will determine

Algorithm 1 Nonlinear Inequality Constrained Filtering  the matrix R that satisfies Eq. 6 and Eq. 7 is,

1 (&, Pofy) « InitializeEstimate() P _1 -1

2: for‘k - |1 to oo do R=(G" =G Gy)  —Co. ®

3 (@jprs Prpp) < Prediction(é;_llk_l,P,L‘k_l,uk) If we plug this measurement covariance into the standard
40 (Zpg, Prpp) < Correctionfy 1, Py, k) Kalman covariance update equation, we will have an efficient
5. (30, Co) < ProjectToConstraintSpace(, Frx) equation for updating the covariance in the state space from
6: for i< to L do the estimated covarianeg;, in the constraint-space that was
7 (8i, C;) + UncertaintyProjectiors(_;, C;_1, ¢;, ;) obtained from uncertainty projection,

8: end for N T T 1

o: (aizlk, P,jlk) + ProjectBackToStaté(,, Cr, x|k, Pri) Pik = Prik—Prjp Ay (AxPerAi +R) AcPy

10: end for = Pyu—PupAL (Co' = CPCLCG ) Ak Py (9)

It is important to note that Eq. 9 represents the prior
C. Covariance Update covariance Py, which is a positive definite matrix, sub-

To compute the updated covariance matrix of the stat&acted by another positive definite matrix. For this reason
we would like to find the matfiXPJk that, when projected the constrained filtering approach that we are introducing

into the constraint-space, is equal to the uncertaintyeptef]  here is guaranteed to reduce the uncertainty in the system as
covarianceCy, thus, long asC', is unequal toCy. This will always be the case

with our uncertainty projection method from Sec. lll.

AkPJkAf =Cy. (6)

Unfortunately, there are possibly infinite solutions tosthi D. Mean Update

problem when the dimension of the state space is higher TO compute the updated mean vecig, , we would like

than the dimension of the constraint-space. to find the appropriate state that, when projected into the
Our solution is to pretend that there is a pseudoconstraint-space, is equal to the newly computed uncéytain

measurement in the constraint-space applied to the state tRrojected estimatér,

we can define in such a way to update the PDF so that its pro- a(dF ) = 3 (10)

jection into the constraint space is the uncertainty ptejc klk L

solution. The motivation for using a pseudo-measuremefife will again use a pseudo-measurement method to update

for this update process is that it lowers the dimension of thiae mean of the Kalman filter. Assuming the same pseudo-

problem that we need to solve to update the covariance. measurement covarianc from Eq. 8, we can write a



Fig. 6. Experiment I: (a) shows an initial estimate of threéhpaterformed during an experiment on a porcine subject thidtem® constraints, (b) depicts
the many hypotheses we are testing, and (c),(d) show thet @fsolrr filtering algorithm that has corrected the estimate.

Kalman gain matrix, as follows, shape/configuration of the robot when driving along three
T T 1 paths around the epicardial surface of the porcine heart.

K = Pyrdy (Akpk\kAk + R) In Fig. 6-(a), we show the initial estimate of the three paths

= Pk‘kAf (CO‘1 — Co‘lCLCo‘l) based on an initial fiducial-based registration procedure.

We then force the resulting mean of the pseudo-measureme\z/xtt.hm the rectangle in Fig. 6-(a), we show that the initial

. . estimate is erroneous and clearly intersects the heaacgurf
update to satisfy Eq. 10. T‘.) do this, we take the Standam'STo perform constrained filtering for this problem, we first
Kalman mean update equation,

sample over a set of parameters that define the registration
ﬁlk =dyp + K (2 — 30), of the ropot to the surface m'odel (sge Fig. 6-(p)). Fgr egch
_ . _ hypothesis, we perform the inequality constrained filigrin
and then cast both sides into the constraint-space (tigqrithm that we have presented in this paper. The constrai
assumes linearization), equations we formulate at each time step are based on
81 =80+ ApK (2 — 3). (11) computing the positions of various points along the robot
) ) paths using a forward kinematic model and then intersecting
The unknown in Eq. 11 is the pseudo-measurement vect@fe point's projected uncertainty ellipse in the workspace
z. The closed form solution that will compute the vector ith the heart surface model. In Fig. 5, we show an example
that satisfies Eq. 10 and Eq. 11 is, of a constraint update changing the estimated path to agree
z =3¢+ (AkK)’l (51— 50) - with the _constraint: The parameters we estimate for each
hypothesis are the joint angles of the links of the robot glon
If we plug this measurement vector into the standard Kalmagith the pose of the initial link, for each of the three paths.
mean update equation, we will have an efficient equation for The result, after applying our novel constrained filtering
updating the mean in the state space from the migan  approach and choosing the most likely hypothesis (in this
the constraint-space obtained from uncertainty projactio case, the one that deviates the least from the initial es)na
s —1 4 A is shown in Fig. 6-(c). The final result shown with detailed
e = Tuik + K (AK) (52 = 8o) surface models is shown in Fig. 6-(d). We note that while
In summary, the mean update presented here uses a pseuti® experimental result was post-processed after thetfoet
measurement correction to modify the Kalman estimate withlgorithm we are introducing is defined in such a way that
the result from our uncertainty projection algorithm. it could be efficiently applied during a live experiment.

V. SURGICAL REGISTRATION AND LOCALIZATION B. Experiment Il
The robot we are using for experiments is a highly Ina second experiment, we tested our constrained filtering
articulated robotic probe (HARP). The HARP was originallyalgorithm with data from a bench-top experiment. For this
presented in [6], [7], [25]. The advantage of the HARP is tha@xperiment, we used a trakSTAR EM sensor (Ascension
it has the stability of a rigid device and the maneuverapilit Technologies, Burlington, VT, USA). We configured the

of a flexible tool. The device is shown in Fig. 4. robot in 5 different paths around a rubber heart model and
i collected shape data for each of the paths. We obtained
A. Experiment | ground truth alignment by carefully registering the tracke

We have performed several image-guidance experimertts the surface model with fiducial markers. To simulate the
on porcine subjects where we obtained preoperative Gdrrors that would occur in a surgical trial, we added extra
images and then processed preoperative surface modelsnbise to the ground truth data to achieve an erroneouslinitia
one experiment, we used a magnetic tracker (NDI Aurorestimate (see the initial estimate in Fig. 7-(a)).
from Northern Digital Inc, Waterloo, Ontario, Canada) to As before, we sampled over the registration parameters
track the distal tip of the robot to collect data for theand for each hypothesis, we recursively ran a Kalman filter



(4]

(5]
(6]
(7]
Fig. 7. Experiment II: in (a) we show the initialized estimate the [8]
registration and configuration of the HARP robot for 5 diéfiet paths around
the heart model. In (b), we show the corrected estimate thatohiaed
with our constrained filtering method.
(9

that estimated the joint angles and the pose of the initigdg;
link. We used our constrained filtering algorithm to update
an estimate when a point along a robot path intersected the
surface model, thus violating a constraint. The result af ou
constrained filtering algorithm is shown in Fig. 7-(b). Thell1]
initial average error (before constraining the estimafdhe

end effector positions for the 5 paths was 16.13mm. Aftgfio)
applying our algorithm, the average error of the end effecto
positions was 2.19mm versus ground truth. This demon-
strates the gain in accuracy we can achieve by leveraging
known geometric constraints in the environment. [13]

VI. CONCLUSION

The work presented here is a novel method for enforcin[é4
nonlinear inequality constraints in the estimation of ahhig
degree of freedom robotic system within a Kalman filter!*®!
We have introduced a new algorithm based on uncertainty
projection and have developed a constraint update procdél
based on a pseudo-measurement correction step.

The application we discussed in this paper is the localizgt7
tion and automatic registration of a robotic surgical probe
We have shown promising results from data collected wit
bench-top and animal experiments. We have shown that our
method is particularly beneficial for correcting regisoat
error in the case of known geometric constraints imposed
preoperative surface models. [20]

It is worth noting that our work has assumed that the
tissue models that we are registering to are inherentlyl rigi[21]
structures. For surgical applications, this is an asswmpti
we must make due to the lack of more representative
preoperative models. Future work on this subject will relaTzZ]
this assumption.
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