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Abstract— We present a novel method for enforcing nonlinear
inequality constraints in the estimation of a high degree of
freedom robotic system within a Kalman filter. Our constrained
Kalman filtering technique is based on a new concept, which
we call uncertainty projection, that projects the portion of the
uncertainty ellipsoid that does not satisfy the constraint onto
the constraint surface. A new PDF is then generated with an
efficient update procedure that is guaranteed to reduce the
uncertainty of the system. The application we have targeted
for this work is the localization and automatic registration
of a robotic surgical probe relative to preoperative images
during image-guided surgery. We demonstrate the feasibility
of our constrained filtering approach with data collected from
an experiment involving a surgical robot navigating on the
epicardial surface of a porcine heart.

I. I NTRODUCTION

Minimally invasive surgery (MIS) has become increas-
ingly popular in medicine due to shortened patient recovery
time and reduced risk of infection. The trade-off when
operating through a small incision, though, is that a tool
cannot be viewed with direct vision, thus a surgeon must
use a form of real-time medical imaging [1]–[4] during MIS
to navigate a surgical tool to a desired anatomical location.

An alternative method for surgical guidance is to provide a
virtualized rendered view of the operation for visual feedback
(referred to as image-guided surgery), as in [5]. This method
is typically based on registering a tracked surgical deviceto
the coordinate frame of preoperatively reconstructed surface
models and then overlaying an image of the device on a
rendering of anatomical structures (see our implementation in
Fig. 1). In practice, though, the localization and registration
of a surgical device can be affected by sensor noise, organs
shifting, tissue deformation, and noisy imaging.

In the case of poor registration and localization during
image-guided surgery, a surgical tool may appear in a lo-
cation that is completely unrealistic, for example inside of
a cardiac surface model when the intervention is performed
outside of the heart. Fig. 1 shows an example of exactly
this situation from an experiment that we performed with a
highly articulated surgical robot called HARP [6], [7].

To improve image-guidance for more accurate feedback
during surgery, we are introducing a new method of con-
strained Kalman filtering to recursively correct registration
and localization parameters for a robotic system with known
geometric constraints. This is applicable to image-guided
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Fig. 1. Our image-guidance system, shown here with multiple paths drawn
for the robot. In this image, the robot is shown intersecting the surface model
and violating geometric constraints.

surgery because anatomical surface models can indirectly
provide information about infeasible robot configurations
that we can formulate as constraints when estimating the
state of the system in a filtering framework.

The contributions of the work presented in this paper
are: 1) the novel use of constrained filtering to correct the
localization and registration of a surgical robot, 2) a new
constrained filtering algorithm calleduncertainty projection,
3) a pseudo-measurement update method to correct the state
estimate of a nonlinear system after performing uncertainty
projection, and 4) an experimental result that demonstrates
the impact this methodology can have in improving the
quality of surgical feedback during MIS.

II. RELATED WORK

A. Image-Guided Surgery and Registration

During MIS, a physician requires visual feedback to
navigate a surgical tool to a desired anatomical location.
Thus, there are many forms of medical imaging that have
been adapted for real-time use. For example, fluoroscopy is
a form of real-time X-ray that is commonly used [1], MRI
and CT [3], [8] have recently been extended to intra-operative
use, and 3D ultrasound [9] is becoming a popular alternative.
Unfortunately, many of these imaging modalities either have
a limited field of view, are incompatible with robotic systems,
and/or emit significant radiation.

With image-guided surgery, a tracking device is attached to
a surgical tool or robot to continuously determine the tool’s
pose in 3D space. The information from the tracker is fused
with some form of image reconstruction from preoperative or



live data, such as in [10]. The goal of image-guided surgery is
to produce a 3D visualization that overlays a rendering of the
surgical tool alongside the anatomical structures of interest.
Commercial examples of this type of sensor-guided feedback
are Ensite NavX (St Jude Medical, St Paul, MN, USA) and
Carto XP/CartoMerge (Bio-Sense Webster, Diamond Bar,
CA, USA), which are used for cardiac mapping and ablation.

To properly fuse pose estimates from a tracker with
anatomical surface models, the two frames of reference must
be registered. A common method is to use an iterative
closest point (ICP) method [11]. Unfortunately, this can
be computationally intensive in the case of aligning large
point clouds [12]. Another method uses ultrasound to register
a surgical tool inside of a heart model using a particle
filter [2]. The benefit of our work over these other approaches
is that our algorithm is applicable to higher dimensional
systems (e.g., a surgical snake robot) and our system will
automatically adjust registration and localization parameters
during an experiment if something changes.

B. Constrained Filtering

Constrained filtering is the problem of correcting or con-
straining the Kalman update or Kalman prediction to account
for known constraints on the state vector [13]. In [14], Simon
and Chia present a method forequalityconstrained Kalman
filtering in which linear constraints are incorporated intothe
Kalman filter update by projecting the unconstrained estimate
onto the constraint hyperplane. Another popular method
is to use a pseudo-measurement approach that simulates
a perfect measurement to enforce equality constraints on
the Kalman filter update step [15]–[17]. In [18], [19], it
was shown that the pseudo-measurement update method is
actually equivalent to the state projection method from [14].

Another related problem, which more closely relates to
this paper, isinequality constrained Kalman filtering [20]–
[23]. One method for inequality constrained filtering is to
simply apply one of the aforementioned equality constrained
filtering algorithms in order to shift the estimate back into
a feasible state. This process, though, would not place the
mean of the filter near the true mean of the feasible region
in the state space. Instead, several researchers suggest the
use of a PDF truncation method that updates the filter with
the mean and covariance of the region of the PDF that lies
outside of the constraint hyperplane [20], [21].

III. U NCERTAINTY PROJECTION

Inequality constrained filtering seeks to eliminate infea-
sible states from the PDF of a Kalman filter, which can
improve the accuracy of the state estimate and reduce un-
certainty. In this section, we will introduce a new algorithm
that we calluncertainty projectionthat can be used to update
the PDF of a Gaussian random vector given a set oflinear
constraints. In Sec. IV, we will then extend our solution to
nonlinear constraints.

A. Problem Definition

Suppose we have a prior PDF of anM×1 state vectors
parameterized by a Gaussian distribution with meanŝ0 and

covarianceC0, thuss ∼ N (ŝ0, C0). Also, suppose we have
a set ofL linear constraints that define feasible states,

φi
T s ≥ αi i = 1 ... L, (1)

where eachαi is a scalar and eachφi is anM×1 vector. We
note that, if desired, a “less-than” constraint can be defined
in the above formulation by negating theφi andαi terms.

The objective of our uncertainty projection algorithm is to
update the state estimate(ŝ0, C0) given the inequality con-
straints. Unfortunately, there is no efficient way to apply all
of the constraints together. Thus, as in [20], our formulation
will apply each constraint in Eq. 1 one-by-one in sequence:
thus the estimate(ŝi, Ci) obtained after applying thei-th
constraint will be used as the new prior when applying the
(i+1)-th constraint. The result of our algorithm will be a
new estimate(ŝL, CL) that will better approximate the true
PDF given the constraints.

B. Algorithm

To compute (̂si, Ci) given the associatedi-th constraint in
Eq. 1, the first step is to transform the state space in such
a way that the constraint is decoupled from all elements of
the transformed state vector except for the first element. This
method is similarly used in [20], [21] for PDF truncation. We
perform this transformation by defining the random vector,

y = VW−1/2TT (s− ŝi−1) , (2)

y ∼ N (0Mx1, IMxM ),

whereT andW are obtained from the Jordan canonical de-
composition of the prior covariance (Ci−1 = TWTT ) andV
is obtained by using Gram-Schmidt orthogonalization [20],
[24] to find the matrix that satisfies,

VW 1/2TTφi =
[

(φT
i Ci−1φi)

1/2 0 ... 0
]

.

The significance of this transformation is thaty is both zero
mean and white and the constraint only applies to the first
element ofy. A new constraint equation can thus be written,

[

1 0 ... 0
]

y ≥ βi (3)

βi =
αi−φT

i ŝi−1

(φT
i Ci−1φi)1/2

.

Because the first element ofy is the only constrained element
of this transformed problem, we have reduced multivariate
constrained filtering to a simpler PDF update problem for
a scalar Gaussian random variable (mean equal to zero and
variance equal to one) that is subject to a scalar constraint.
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Fig. 2. In (a), a normally distributed random variable is shown with a scalar
constraint that defines the feasible and infeasible regions. In (b), we show
our uncertainty projection method which projects the tail ofthe Gaussian
onto the constraint and then computes the new mean and variance.
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Fig. 3. Shown here is an example of the uncertainty projectionmethod we use for updating the mean and variance. In (a) we show the prior distribution
and the constraint. In (b) we show the decoupled transformed state and its uncertainty projected solution. In (c) we show the result from (b) transformed
back into the original state space.

To update this one-dimensional PDF, we project the por-
tion of the probability mass that is less than the constraint
onto the constraint itself and then compute the new mean and
variance, see Fig. 2. The motivation for computing the new
estimate this way is that it best preserves the contributionof
the probability mass less than the constraint. To perform this
uncertainty projection update, we can write the definition of
expectation, as follows,

µi =

∫ βi

−∞

βi√
2π

e
−z2

2 dz +

∫ ∞

βi

z√
2π

e
−z2

2 dz

σ2
i =

∫ βi

−∞

(βi − µ)
2

√
2π

e
−z2

2 dz +

∫ ∞

βi

(z − µ)
2

√
2π

e
−z2

2 dz.

This formulation involves two integrals: one that is associated
with the infeasible region and one that is associated with the
feasible region, withβi being the point of the constraint. The
solution that we have derived by evaluating these integrals,

γi =−2π−2βie
−β2

i
2

√
2π

µi =
1√
2π

e
−β2

i
2 +

1

2
βi

[

1 + Erf

(

βi√
2

)]

(4)

σ2
i =

1

4π

[

−2e−β2

i +(2+β2
i )π+γiErf

(

βi√
2

)

−β2
i πErf

(

βi√
2

)2
]

,

can then be transformed back into the original state space
by reversing the transformation that originally whitened the
noise to decouple the elements of the state vector,

ŷi =
[

µi 0 ... 0
]T

Σi = diag(σ2
i , 1, ..., 1)

ŝi = TW 1/2V T ŷi + ŝi−1

Ci = TW 1/2V TΣiVW 1/2TT .

In summary, through the update process above, the meanŝi
and covarianceCi are updated recursively from(ŝi−1, Ci−1)
given thei-th constraint equation in Eq. 1.

The example in Fig. 3 illustrates our uncertainty projection
method. In Fig. 3-(a), a constraint tells us that the true
state must lie to the right of the dotted line. The algorithm
transforms the state according to Eq. 2, the result of which is
shown in Fig. 3-(b), and a new estimate, labeled as(ŷi,Σi),
is computed using Eq. 4. Lastly, the estimate is transformed
back to the original state space, resulting in an updated
estimate, shown in Fig. 3-(c).

The significance of the example in Fig. 3 is that the
resulting uncertainty ellipse qualitatively bounds the region
of the PDF that is deemed feasible by the constraint equation
while successfully discarding the majority of the infeasible
region of the PDF. We note that our efficient algorithm
can be used for any set of linear constraints imposed on
a multidimensional Gaussian distribution.

IV. N ONLINEAR INEQUALITY CONSTRAINED FILTERING

In this section, we will introduce a second algorithm that
will extend our uncertainty projection algorithm to systems
with nonlinear constraints, which is particularly applicable
to our surgical application.

A. Problem Definition

Suppose that a Kalman filter is estimating a system with an
N×1 state vectorxk. After each prediction, the Kalman filter
produces an estimate(x̂k|k−1, Pk|k−1) and after each correc-
tion, the Kalman filter produces an estimate(x̂k|k, Pk|k).
The constrained filtering problem that we define here is to
update the corrected estimate(x̂k|k, Pk|k) given a set ofL
constraints. This is similar to our formulation in Sec. III,
except suppose now that the constraints are nonlinear,

φi
T a(xk) ≥ αi i = 1 ... L. (5)

In this formulation, we assume that a known functiona(xk)
exists that will map the state vector to a space in which the
constraints are linear, which we call theconstraint-space. For
many applications, the constraint-space should be chosen to
be the workspace of the robot, for this is where the system
will be limited by geometric constraints.

B. Algorithm

The first step in our constrained filtering algorithm is
to project the Kalman filter estimate(x̂k|k, Pk|k) into the
constraint-space with the following projection,

ŝ0 = a(x̂k|k), C0 = AkPk|kA
T
k ,

whereAk is the Jacobian of the nonlinear functiona(xk)
linearized about the current estimatex̂k|k.

After performing this projection, the problem has been cast
into a form that is solvable with our uncertainty projectional-
gorithm for linear constraints, which we discussed in Sec. III.
After plugging the estimate(ŝ0, C0) into our uncertainty



Fig. 4. This is the HARP robot that we used for our constrainedfiltering
experiments.

projection algorithm along with the constraints, the result
would be the updated estimate(ŝL, CL). This result still lies
in the constraint-space, but now has reduced uncertainty and
is likely a better estimate of the PDF given the constraints.

To update the actual Kalman estimate, we need to modify
the PDF so that its projection into the constraint-space cor-
responds to the new estimated uncertainty in the constraint-
space. In most applications, unfortunately, the dimensionof
the constraint-space will be lower than that of the state space.
This means that such a projection is not uniquely defined
nor easy to compute. To solve this problem, we introduce a
covariance update and a mean update based on applying a
pseudo-measurement. Our algorithm is described in Alg. 1.

Algorithm 1 Nonlinear Inequality Constrained Filtering

1: (x̂+
0|0, P+

0|0) ← InitializeEstimate()
2: for k ← 1 to∞ do
3: (x̂k|k−1, Pk|k−1) ←Prediction(̂x+

k−1|k−1,P+
k−1|k−1,uk)

4: (x̂k|k, Pk|k) ← Correction(̂xk|k−1, Pk|k−1, zk)
5: (ŝ0, C0) ← ProjectToConstraintSpace(x̂k|k, Pk|k)
6: for i← to L do
7: (ŝi, Ci)←UncertaintyProjection(̂si−1,Ci−1,φi,αi)
8: end for
9: (x̂+

k|k,P+
k|k)←ProjectBackToState(ŝL,CL, x̂k|k,Pk|k)

10: end for

C. Covariance Update

To compute the updated covariance matrix of the state,
we would like to find the matrixP+

k|k that, when projected
into the constraint-space, is equal to the uncertainty projected
covarianceCL, thus,

AkP
+
k|kA

T
k = CL. (6)

Unfortunately, there are possibly infinite solutions to this
problem when the dimension of the state space is higher
than the dimension of the constraint-space.

Our solution is to pretend that there is a pseudo-
measurement in the constraint-space applied to the state that
we can define in such a way to update the PDF so that its pro-
jection into the constraint space is the uncertainty projected
solution. The motivation for using a pseudo-measurement
for this update process is that it lowers the dimension of the
problem that we need to solve to update the covariance.

Fig. 5. This is an example of our constrained filtering method correcting the
estimated configuration of the HARP surgical robot based on the constraints
imposed by the surface model.

We first force the resulting covariance of the pseudo-
measurement update to satisfy Eq. 6. To do this, we take
the standard Kalman covariance update and then both left
and right multiply byAk,

AkP
+
k|kA

T
k =

AkPk|kA
T
k −AkPk|kA

T
k

(

AkPk|kA
T
k +R

)−1
AkPk|kA

T
k ,

which can be simplified, as follows,

CL = C0 − C0 (C0 +R)
−1

C0. (7)

The unknown in Eq. 7 is the covariance of the pseudo-
measurementR. The closed form solution that will determine
the matrixR that satisfies Eq. 6 and Eq. 7 is,

R =
(

C−1
0 − C−1

0 CLC
−1
0

)−1 − C0. (8)

If we plug this measurement covariance into the standard
Kalman covariance update equation, we will have an efficient
equation for updating the covariance in the state space from
the estimated covarianceCL in the constraint-space that was
obtained from uncertainty projection,

P+
k|k = Pk|k−Pk|kA

T
k

(

AkPk|kA
T
k +R

)−1
AkPk|k

= Pk|k−Pk|kA
T
k

(

C−1
0 − C−1

0 CLC
−1
0

)

AkPk|k. (9)

It is important to note that Eq. 9 represents the prior
covariancePk|k, which is a positive definite matrix, sub-
tracted by another positive definite matrix. For this reason,
the constrained filtering approach that we are introducing
here is guaranteed to reduce the uncertainty in the system as
long asCL is unequal toC0. This will always be the case
with our uncertainty projection method from Sec. III.

D. Mean Update

To compute the updated mean vectorx̂+
k|k, we would like

to find the appropriate state that, when projected into the
constraint-space, is equal to the newly computed uncertainty
projected estimatêsL,

a(x̂+
k|k) = ŝL. (10)

We will again use a pseudo-measurement method to update
the mean of the Kalman filter. Assuming the same pseudo-
measurement covarianceR from Eq. 8, we can write a
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Fig. 6. Experiment I: (a) shows an initial estimate of three paths performed during an experiment on a porcine subject that violates constraints, (b) depicts
the many hypotheses we are testing, and (c),(d) show the result of our filtering algorithm that has corrected the estimate.

Kalman gain matrix, as follows,

K = Pk|kA
T
k

(

AkPk|kA
T
k +R

)−1

= Pk|kA
T
k

(

C−1
0 − C−1

0 CLC
−1
0

)

We then force the resulting mean of the pseudo-measurement
update to satisfy Eq. 10. To do this, we take the standard
Kalman mean update equation,

x̂+
k|k = x̂k|k +K (z − ŝ0) ,

and then cast both sides into the constraint-space (this
assumes linearization),

ŝL = ŝ0 +AkK (z − ŝ0) . (11)

The unknown in Eq. 11 is the pseudo-measurement vector
z. The closed form solution that will compute the vectorz

that satisfies Eq. 10 and Eq. 11 is,

z = ŝ0 + (AkK)
−1

(ŝL − ŝ0) .

If we plug this measurement vector into the standard Kalman
mean update equation, we will have an efficient equation for
updating the mean in the state space from the meanŝL in
the constraint-space obtained from uncertainty projection,

x̂+
k|k = x̂k|k +K (AkK)

−1
(ŝL − ŝ0) .

In summary, the mean update presented here uses a pseudo-
measurement correction to modify the Kalman estimate with
the result from our uncertainty projection algorithm.

V. SURGICAL REGISTRATION AND LOCALIZATION

The robot we are using for experiments is a highly
articulated robotic probe (HARP). The HARP was originally
presented in [6], [7], [25]. The advantage of the HARP is that
it has the stability of a rigid device and the maneuverability
of a flexible tool. The device is shown in Fig. 4.

A. Experiment I

We have performed several image-guidance experiments
on porcine subjects where we obtained preoperative CT
images and then processed preoperative surface models. In
one experiment, we used a magnetic tracker (NDI Aurora
from Northern Digital Inc, Waterloo, Ontario, Canada) to
track the distal tip of the robot to collect data for the

shape/configuration of the robot when driving along three
paths around the epicardial surface of the porcine heart.

In Fig. 6-(a), we show the initial estimate of the three paths
based on an initial fiducial-based registration procedure.
Within the rectangle in Fig. 6-(a), we show that the initial
estimate is erroneous and clearly intersects the heart surface.

To perform constrained filtering for this problem, we first
sample over a set of parameters that define the registration
of the robot to the surface model (see Fig. 6-(b)). For each
hypothesis, we perform the inequality constrained filtering
algorithm that we have presented in this paper. The constraint
equations we formulate at each time step are based on
computing the positions of various points along the robot
paths using a forward kinematic model and then intersecting
the point’s projected uncertainty ellipse in the workspace
with the heart surface model. In Fig. 5, we show an example
of a constraint update changing the estimated path to agree
with the constraint. The parameters we estimate for each
hypothesis are the joint angles of the links of the robot along
with the pose of the initial link, for each of the three paths.

The result, after applying our novel constrained filtering
approach and choosing the most likely hypothesis (in this
case, the one that deviates the least from the initial estimate),
is shown in Fig. 6-(c). The final result shown with detailed
surface models is shown in Fig. 6-(d). We note that while
this experimental result was post-processed after the fact, the
algorithm we are introducing is defined in such a way that
it could be efficiently applied during a live experiment.

B. Experiment II

In a second experiment, we tested our constrained filtering
algorithm with data from a bench-top experiment. For this
experiment, we used a trakSTARTM EM sensor (Ascension
Technologies, Burlington, VT, USA). We configured the
robot in 5 different paths around a rubber heart model and
collected shape data for each of the paths. We obtained
ground truth alignment by carefully registering the tracker
to the surface model with fiducial markers. To simulate the
errors that would occur in a surgical trial, we added extra
noise to the ground truth data to achieve an erroneous initial
estimate (see the initial estimate in Fig. 7-(a)).

As before, we sampled over the registration parameters
and for each hypothesis, we recursively ran a Kalman filter
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Fig. 7. Experiment II: in (a) we show the initialized estimate for the
registration and configuration of the HARP robot for 5 different paths around
the heart model. In (b), we show the corrected estimate that we achieved
with our constrained filtering method.

that estimated the joint angles and the pose of the initial
link. We used our constrained filtering algorithm to update
an estimate when a point along a robot path intersected the
surface model, thus violating a constraint. The result of our
constrained filtering algorithm is shown in Fig. 7-(b). The
initial average error (before constraining the estimate) of the
end effector positions for the 5 paths was 16.13mm. After
applying our algorithm, the average error of the end effector
positions was 2.19mm versus ground truth. This demon-
strates the gain in accuracy we can achieve by leveraging
known geometric constraints in the environment.

VI. CONCLUSION

The work presented here is a novel method for enforcing
nonlinear inequality constraints in the estimation of a high
degree of freedom robotic system within a Kalman filter.
We have introduced a new algorithm based on uncertainty
projection and have developed a constraint update process
based on a pseudo-measurement correction step.

The application we discussed in this paper is the localiza-
tion and automatic registration of a robotic surgical probe.
We have shown promising results from data collected with
bench-top and animal experiments. We have shown that our
method is particularly beneficial for correcting registration
error in the case of known geometric constraints imposed by
preoperative surface models.

It is worth noting that our work has assumed that the
tissue models that we are registering to are inherently rigid
structures. For surgical applications, this is an assumption
we must make due to the lack of more representative
preoperative models. Future work on this subject will relax
this assumption.
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