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Abstract— We present a method for topological SLAM that
specifically targets loop closing for edge-ordered graphsnstead
of using a heuristic approach to accept or reject loop clos-
ing, we propose a probabilistically grounded multi-hypothesis
technique that relies on the incremental construction of a
map/state hypothesis tree. Loop closing is introduced auto

matically within the tr.ee equnsion, anqllikely hypothesesare Fig. 1. This is a floor plan of Wean Hall at Carnegie Mellon Umaity
chosen based on their posterior probability after a sequereof  yith the Voronoi graph drawn to depict the topology.

sensor measurements. Careful pruning of the hypothesis tee

keeps the growing number of hypotheses under control and a  The contribution of this work is the design of a tree

recursive formulation reduces storage and computational @sts. expansion algorithm specific to edge-ordered graphs, ds wel

Experiments are used to validate the approach. as the introduction of a customized method for recursively

computing the posterior probability over the topologicapm

hypotheses. This posterior probability is based on a Bayesi
Simultaneous localization and mapping (SLAM) is themodel selection criterion that prevents over-fitting. Last

task of incrementally building a map of the environmenthis work introduces a set of conservative pruning rules tha

with a robot while simultaneously performing localizationhelp reduce the number of hypotheses in the tree.

within that map. In the past decade, there has been anOur experimental evaluation relies on the sensor-based

intense research effort to solve this problem accuratety ancremental construction of the Voronoi diagram of an envi-

efficiently. The methods introduced are based on three typasnment with a mobile robot, as in [5]. Th&eneralized

of maps: feature maps [1], [2], grid or sample based obstacl®ronoi Graph (GVG) is the resulting topological graph

maps [3], [4], and topological maps [5]-[7]. whose vertices are points of three-way equidistance and
Topological maps are concise maps that represent an enwihose edges are obstacle-free paths between vertices. See

ronment as a graph, whose vertices are interesting “placesig. 1 for an example map.

and whose edges represent the paths between them. The

I. INTRODUCTION

advantages of topological maps are their computational ef- Il. RELATED WORK
ficiency, their reduced memory requirements, and their lack Many topological mapping methods commit to a loop
of dependence on metric positioning. closure after observing a similar fingerprint or structural

Loop-closing for topological mapping is the problem ofcharacteristic to that of a vertex already in the map. Choset
detecting when a robot has returned to a previously visiteg 5. [5] use the degree and equidistance measures at the
vertex in the graph. This can be especially difficult for &,54es of a Voronoi diagram to determine if the robot has
map with perceptual aliasingwhere multiple “places” are etyrmed to a previously visited vertex. Similarly, Tonsat.
indistinguishable to the robot. To solve this problem, the, 8] ohserve when the probability distribution over robo
robot must reason about the connectivity of the graph Viat'}ﬁ)sitions splits into two peaks, suggesting a loop. In both
sequence of observations it obtains during an experiment.cases, the algorithm is susceptible to the perceptuairajias

The primary issue with many of the existing topologicalyroplem, in which many locations are ambiguous.

SLAM techniques is that they commit to a loop-closure o muyfti-hypothesis approach is necessary to investigate
heuristically when two observations appear similar. If the,ytiple loop closure proposals. Several other papersdess
loop-closing decision is incorrect, the algorithm canm®t r this one, investigate the use of a hypothesis tree to store
cover and the resulting experiment will fail. We use a multiyogsible topological maps. Dudek in [9] constructs the tree
hypothesis approach that avoids this problem entirely bynq eliminates hypotheses when they are inconsistentlliSave
storing a tree of possible hypotheses, each of which encodgs 5| in [10] use a tree and analyze the affect of planaoity t
the robot's state and a topological graph. reduce the number of hypotheses. Neither of these solytions
o _ o though, computes a probability measure over the set of
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from the vertex. Therefore, we initialize the root of the

hypothesis tree as followsi = 0, k = 0, N} =1, v} =0,

anda} = 0. The circular list for the first vertex.?(0), is
ez 2o 1432 o initialized as a list of lengtld, forvv_hich each entry is I:_:\beled
b) as unexplored. All hypotheses in the tree are ultimately

: . spawned from this initial root hypothesis.
Fig. 2. This is an example of two edge-ordered graphs. Theesahext h bot i . | . h ti
to each vertex are the vertex indices, while the parentidetequences 1€ robot is continuously moving. At each time step

represent the edge-ordered neighbor lists associatedcto \@atex. The the robot chooses a motion input, in order to transition
first mapped edge for each vertex is shown with an arrow. to another vertex. The motion input is a relative offset

Although the algorithm is similar in its use of Bayesianfrom the previous arrival edge, and_produpes the following
inference, we believe it may have difficulty closing largefeparture edgs;, for a new hypothesis that is spawned from
loops with significant positioning error. hypothesish.

~ De et. al. [12] use an E-M algorithm to generate topolog- Br = (al_, + ug,) mod bx_; 1)

ical maps that are consistent with the data. They incorporat

a model selection criterion to penalize over-fitting withAfter departing along edgg}, the robot drives to a new
notable success. Unfortunately, their novel approach g onvertex and then detects the number of edges emanating from

a)

applicable to graphs that have one or two cycles. that vertex, which is stored as the degree .
We assume that the robot correctly performs the motion
I1l. CONSTRUCTING AHYPOTHESISTREE input u;, at each time step and therefore leaves the previous

We adopt a multi-hypothesis approach to SLAM. Eaclyertex via the appropriate departure edge. This has been
hypothesish stores the robot's state on that graphy, as an accurate assumption experimentally, most likely due to
well as a possible edge-ordered topological gra@h, to the robust sensor-based control of the robot we use for
be defined shortly. The state is represented by the vertexperiments. Nevertheless, we provide a discussion of how
at which the robot is currently located”, as well as the to relax this assumption in Sec. VII.
edge from which the robot arrived at that verte, thus
X]' = (v}, a}). The subscript: represents the time step thatAlgorithm 1 Expanding the Hypothesis Tree
is associated with that hypothesis. 1: for 6}1“ h e }flk,l d}? X
A. Edge-ordered Topological Graphs 2 g):;lv(o?g:llr]l:)f %szlkg,ﬂ:_ roadriyponesisy

For each hypothesi#, a possible topological graph is 4: if L} (v} |, Bx) = unexplored then

stored, which, in our case, is an edge-ordered graph. This: h' « CreateChildHypothesia}
type of graph can be represented by the number of vertices: LZ’ =L,

N} and a set of circular neighbor lists? (one list per 7. LV (NP +1, 0) =ol_,

vertex), thusG? = (N}, L?), as in [13]. A neighbor list, g for e = 1 to 6, — 1 do

such asL(v!') stores the vertices in the graph that are . LZ/(NI?—l +1, e) = unexplored
neighbors of vertexz;,’cI in the order they occur (counter- qo. end for

clockwise from the first mapped edge). An element of thq1. LZ’ (Uﬁfp Br) = Nz?q 41

neighbor listL?(vl, j) represents the neighboring vertex of 15. AddChild(/, N | +1, 0, N}, +1, LZ/)
v} along thej-th edge. Fig. 2 shows two edge-ordered graphs. for v = 0 to NI?:I — 1 with v ; v, do

with similar topologies but different edge-orderings. 14: forall o st. L' (v,a) = unexplored do
For this work, we also consider partially explored maps,s. 1 « CreateChildHypothesis]
In this case, a neighbor list in the graph contains one or morg;. LZ’ =Lh_
entries marked asnexplored, which means, according to 17: h (v, @) = vl
that hypothesis, the robot has not yet traversed the edqg_ LZ/ (v;‘ 3 )k;lv
associated with that entry of the neighbor list. ' ko k1) b ¥
19: AddChild(w', v, o, Np ;, L)
B. Incremental Construction of a Hypothesis Tree 20: end for
Our goal is to incrementally build a set of hypothese@lz elseend for

that can completely reproduce the possible map/state pai?g f ) .
at every time step. To do this, we maintain a hypothesis tree?> hh,‘_ CrheateC]:IhlldHypothesﬁ][
where each level of the tree represents a different time steff’ Uk = Ly (v, ﬁk),
in the experiment. Therefore, a level of the tree is indexed® ap =e st Lgfl(vg L) =},
with & and a hypothesis within that level is indexed with ~ 26: AddChild(/, vy, a’, Ny, Li_y)
The tree structure we maintain is similar to that in [7], [9]. 27:  end if

The robot begins an experiment at one vertex in the mag8: end for
The robot has no other information except for the degree of
that vertex gy, which equals the number of edges emanating When the robot chooses a new motion inpyt we must




;R a higher probability measure and is therefore more likely to
: represent the true state and map.
a e 209 A. Posterior Probability

During time stepk, the robot leaves the previous vertex,
traverses an edge in the graph, and arrives at a new vertex. A
R measurement; is obtained during the edge traversal (such
Ry as a travel distance measurement) and a measurerfiésit
12 2019 9 e zow obtained when the robot arrives at the new vertex (such as a
range measurement to obstacles). The posterior prolyabilit
165 34 4 @) s @) of a hypothesis is as follows,

p(XI?7GZ|ZO:k7u1:k)a (2)

AR Y where, as beforeX andG” represent the robot’s state and
R ' ' . ' graph respectively. Additionally;o.. = ({5, 27.,) is the

d) e) ) collection of all measurements during the experiment, tvhic
Fig. 3. This is an example of expanding the hypothesis treetduobot includes the Edge measurement Seque?@' as well as

motion. Hypothesis (a) spawns (b) and (c) after one edgersal After the vertex measurement sequengg,. The sequence,.y,
another edge traversal, hypothesis (b) spawns (d) and (% tWpothesis  represents the motion inputs through time step

(c) spawns only (f). The location d® in the figure marks the robot’s state. The posterior of Eqg. 2 can be Computed using Bayes law,

update the hypothesis tree by expanding all of the leaf nodes (XTI, G |20, urik) =
of the tree (the leaf nodes being the set of hypotheses at tim hoo Sk 20ck hl'k N W
stepk — 1). The new hypotheses that are spawned become " (20| X Gy wak) p(Xigs Gglunr)
the new leaf nodes of the tree for time siepThe algorithm n p(zom| X1 Gl ure) p(XPIGE, uik) p(GRlurg)
for expanding the tree is outlined in Alg. 1. n p(zok| XJ, GR urg) p(GRlusg), ©)
Alg. 1 expands allH;_; leaf nodes of the hypothesis
tree in the following way. IfL? | (v} |, 8x) (the neighbor
of v | that is associated to the departing ed#j¢ is not

3 (24) 3(21)

where p(z0.x| X}, G, u1.1,) is the measurement likelihood

function andp(X}', G%|us.) is a prior on the hypothesis.
) 3 .

unexplored, then we copy the hypothesis to a single child "€ Prior reduces tp(Gy|us.y,) in Eg. 3 because the proba-

ili i i h|cah
hypothesis but move the robot's state to the new vertex artiity of the state given the map and inpute X! |G, u1:x),
update the arrival edge. £/, (v, Bx) is unexplored is equal to one. This is because we assume we have a robot

then the algorithm considers several possibilities thatlwo that correctly performs the motion input sequence. Theascal

agree with hypothesis. The first possibility is that the robot Valu€ 7 in Eq. 3 is used for normalization over possible
traverses the unexplored edge and arrives at a new verfdPotheses, such that the following holds true,

(one hypothesis is spawned for this possibility). Additity Hi—1

the algorithm considers that a loop is closed and the robot Z p(X}, G200, urk) = 1,

arrives at a previously visited vertex via one of its unexgdb h=0

edges. One hypothesis is spawned for each unexplored edgifere H;, is the number of current leaf nodes in the
in the graph except for the current departure edge. hypothesis tree. This is valid because the tree’s exhaustiv

Fig. 3 demonstrates the expansion of the hypothesis tregkpansion guarantees that one of the hypotheses in the leaf
In this example, an edge traversal causes (a) to spawddes of the tree is correct.
hypotheses (b) and (c). This accounts for the possibility of )
either visiting a new vertex or closing a loop with vertexB- Likelihood Function
1. After a second edge traversal, hypothesis (b) spawnsFor a given time step, after expanding the leaf nodes of the
hypotheses (d) and (e) for the same reasoning. Hypothesige to account for robot motion, we compute the posterior
(c), though, is a complete graph with no unexplored edgeprobability of the new leaf nodes of the tree using Eq. 3.
and therefore spawns just one hypothesis, (f), in which thEo reduce storage and computation, the likelihood term of
state has moved according to the robot motion. a new hypothesid’ can be computed recursively given the

likelihood of the parent hypothesis i.e.,

p(ZO:k|X]?/a GZ/ 5 Ul:k)

In order to solve the problem of topological SLAM, we— (25, 20 20, XJ GV ung) (2ot | XP, GE utk)
must determine which hypotheses among the leaf nodes of
the hypothesis tree are likely to represent the true stade an?
the true map. To do this, we compute the posterior probgbilit )
of each hypothesis given a sequence of sensor measuremelm&q. 4, the likelihood function has been split into two term
The hypothesis that better fits the sensor data will produessing the definition of conditional probability: the second

IV. TOPOLOGICALSLAM

’ ’
(28, 202001, X1, G sunk) P20 | X g, Gy s Ut



term can be viewed as a prior on the likelihood function ’ : 4 35)
for the recursion, while the first term represents the update
to the likelihood after receiving a new measurement. The
hypothesigi’ and time steg: have been reverted back to the
parent hypothesig and the previous time step— 1 in the a) 62 2(13) by 162
second term of Eq. 4 in order to fit the recursive form. This

is done without error or approximation due to the fact thakig. 4. This is an example of two different topologies that cesult in a
past measurements are only dependent upon the graph é’ﬁ@tion of perceptual aliasing. Both topologies fit thasse data well.

inputs before the tree expansion. _fitthe sensor data very well. On the other hand, the topology
The edge measuremesy, according to hypothesis, is  in Fig. 4 (b) would also fit well for the same measurement

associated with edge}; of vertexvy'. Likewise, the measure- sequence due to perceptual aliasing. Which topology should

mentz is associated with vertex;. For each hypothesis, we pe preferred? In some sense, topology (b) is over-fitting the

maintain the mean of the measurements associated 10 €gfla. We use the following distribution for experiments,
edge, which we denote.?, as well as the mean of the mea-

surements associated to each vertex, which we dendte p(Gluik) o exp(—Ny log k)

hic i imi i i h(,h h
ey, is indexed similarly to a neighbor list, e.g.;:(vy, a%).  \when two hypotheses have a similar likelihood, this prior

h g i h(,h
and i, is indexed by the vertex, e.guj (vp). Las_tly, e will give preference to the smaller map. This makes sense,
keep track of the number of measurements associated to eaelause we would like to prevent over-fitting. It turns out

gdge WithM.;; and each vertex with4, .. These are indexed that this formulation is equivalent to using the Bayesian

3fformation criterion [14] for model selection. The Akaike
information criterion [15] is related and is used in [12] kwit
p(z5, Zleo:k—17X£/7 GZ/MM:/@) o considerabl_e_suc_cess for a Iimit_ed class of topologie_s.
1 By combining in Eq. 3 the prior developed here with the
exp (—§(zg—uez_l (W, aMNTCE ™ (2E — et (vZ,aZ))) likelihood function of Eq. 4, we are effectively trying to
) capture the perfect balance between small concise maps that
X exp (—5(2;5—/%2_1 @NTOP (28 — ol (UZ))) (5) yvogld make sense for a _structured environment and large
intricate maps that better fit the data.

6 (5,1) 3 (24)

2 (1,3)

recursive computation for the likelihood update of Eq. 4,

In Eq. 5, the meang.? , andu,¢ , are acting as sufficient V. PRUNING THE HYPOTHESISTREE
statistics for the history of sensor measuremepts_ 1. The

measurements are assumed to have additive zero mean w ita—he tree expansion algorithm described in Sec. Il ex-

Gaussian noise with covariancBs and R, for the edge and austi_vely considers all possible loop closures during an
vertex respectively. The following matrices are used in th xperiment, Ther_efore, even for a small map, ?he number of
computation of Eq. 5 eaf hypotheses in the tree can grow very quickly (even to

a size that is not computationally feasible). To keep the tre
. 1 " 1 size bounded, we apply a series of pruning tests to the leaf
Cr=\1+7 Y Ce=|1+—= R v hypotheses at each time step. This pruning stage is crucial
Meyy (v, o) Moy (vg) . . .
S o _ in the success of the algorithm and allows for the processing
To I'EVIISIt the orlg_l_nal problem, we WOUlq like to compute thQ)f |arge and ambiguous maps. We app|y 0n|y conservative
posterior probability for each hypothesis when the rob@t tr rules to prune hypotheses in order to reduce the chance of
verses a new edge. To do this, we first update the likelihoagiminating the hypothesis that represents the true natp/st

function with Eq. 4 by loading the likelihood of the parentwe note that by eliminating hypotheses in this step, our
hypothesis and incorporating the new information with Eq. Sapproach is no longer Bayes optimal.

The posterior is then easily computed by Eq. 3. Finally, the

meansy.; and u,} are updated for the next iteration. A. Degree Test

) . In Alg. 1, when L, (v!'_,, Br) = unexplored, the

C. Prior Distribution hypothesis tree adds]C al(cr];ilé hypc)Jthesis for every possible
Neglected thus far in our discussion is the pyi¢@}:[u1..)  loop closure to any vertexthat also has an unexplored edge.

in Eq. 3. This term represents, without any sensor infolf the detected degree of the arrival verté, is unequal

mation, the probability that the robot happens to be placed the degree of vertex, then that child hypothesis is

in an environment with a topologgs;. What should this immediately discarded. This is because the detected number

distribution be? There is no way to know the right answer.qf edges seen emanating from the new vertex should agree
But we can do better than a uniform distribution. Considegith what is expected for vertex This test involves no risk

the following situation: a robot is circling a triangle tdpgy,  of eliminating the true hypothesis.

as in Fig. 4 (a), with three different edges. Over time, it

would appear that a sensor measurement is repeated evBrylikelihood Update Test

third time step because the robot is traversing the same thre When  updating the likelihood for a new

edges over and over. The triangle, as the correct map, woulgtipothesis recursively via Eq. 4, we observe whether



p(z5, 202061, X}, GR') exceeds ai-sigma error bound.

If true, this would imply that the new measurements
z; and/orz; do not agree with the measurements already
associated to the corresponding edge/vertex and are theref
outliers in the data. This hints at an incorrect loop closure
and thus the hypothesis is pruned. The test we use for
pruning is when one of the following conditions is met,

(2 — el (0, Q) TCE ™ (e —prefs (v ) > 16
(2h = ol )T O — ol (0]) > 16

This test has an extremely small but nevertheless non-zero
chance of eliminating the true hypothesis.

C. Planarity Test

As in [10], we use a strict test to eliminate hypotheses
that are not planar. This test can often prune a large number
of hypotheses without the risk of discarding the correct
hypothesis. The specific planarity test algorithm that we Usrig. 5. This is a map created to simulate a much larger and amtiguous
is related to [13] because it is specifically designed foreedg version of Wean Hall at Carnegie Mellon University. Each bemnext to
ordered graphs The benefit is that we can prune even m&gertex represents the corresponding true vertex from hwthies newly

’ . ] Ewded vertex has been copied. Each number next to an edgsesfs the
graphs, e.g. those that are planar in a conventional sense giresponding true edge from which this newly added edgéées copied.
not planar when considering edge-ordering. An example is

the graph in Fig. 2 (b). post-process the data and completely recreate in simalatio
the robot performing real experiments and acquiring real
D. Posterior Probability Test sensor measurements but with the added benefit that we can

Our last pruning rule is to eliminate any hypothesis whoslter the path that the robot takes through the graph by gimpl
posterior probability drops below a threshold. This implie Féordering the measurement sequence that is obtained.
that the hypothesis is either a very poor fit to the sensor We ran an experiment (Experiment 1) in which the robot
data or is dominated by a hypothesis that can explain thperforms 100 random edge traversals in the map depicted
sequence of measurements just as well with a smaller map. Fig. 1. The experiment starts with the robot sitting at
A hypothesis is pruned when the following condition is metpne of the vertices with no additional information. The tree
expansion algorithm from Sec. Il and the probability com-
putations from Sec. IV are used to track multiple hypotheses
VI. ALGORITHM EVALUATION of the map and robot state. For this environment, there are a
. . number of ambiguities that make mapping difficult, namely
The topology we use for experiments is based on the_ .. hat share the same equidistance and edaes that are
Voronoi diagram: the locus of points equidistant to two oﬁlertlceSt a . quidista 9

he same length. Despite the ambiguities, the robot cdyrect

more obstacles. Vertices correspond to points of three'w"’r‘?{aps this environment and localizes properly within the 100

equ@stance a_nd edges correspond to paths between veré%e traversals. At the end of the experiment, there is only
locations. In Fig. 1, a floor plan of the sixth floor of Wean

. X o . .one hypothesis that survives the pruning steps in Sec. V, and
Hall at Carneg|e Mellon _UnlverS|ty is depicted along W|thit is the correct hypothesis with the correct map.
its corresponding Voronoi graph.

For all of our topological SLAM experiments, we use a e also ran another more challenging experiment (Ex-
two wheeled differential drive robot that has an array oP€riment 2) that is based on a ground truth map that has a
sonar sensors. The robot can navigate from vertex to vertB)/Ch larger amount of ambiguity. This example is used to
in the generalized Voronoi graph (GVG) of an environmeng#€monstrate our algorithm’s ability to handle th_e problefm o]
using sensor-based control. While traveling along an edge Perceptual aliasing. The graph we used for this experiment
the graph, the robot records a distance traveled measutem§nShown in Fig. 5, and was made by adding a number
that corresponds te¢ in the SLAM formulation of Sec. Iv. ©Of extra vertices and edges to the original floor plan of
While visiting a vertex in the graph, the robot records &19- 1. Although this map is artificial, the vertices and esige
range measurement to obstacles that correspondg fa ~ are duplicated from the original map and th.erefore we can
the SLAM formulation of Sec. IV. still recreate real sensor measurements as if the robot were

We recorded a library of data from real experiments thaictually traveling in this environment.
were performed in the map depicted in Fig. 1. During the We ran Experiment 2 in the map depicted in Fig. 5
experiments, we had the robot store the aforementioned meeith the robot performing 500 random edge traversals and
surements for each edge and each vertex over several tridldly exploring the map. The number of hypotheses tracked
By creating this large library of measurement data, we cahroughout the experiment is shown in Fig. 6 (a). In the

p(X], G120k, urek) < T



Number of Hypotheses (Experiment 2)

. assumption can be made more general by adding a motion

g model to Eq. 3 according to the law of total probability,
%102’ 1 p(XﬁGZ,ul;k):Zp(X£|X£71,GZ,uk)p(X£71|GZ,u1;k_1)
2 oL E ngl

ol AZ‘SO f:gm —————1 1 The difference would be that for any given tree expansion, a
a) Edge Traversals leaf hypothesis would spawn more hypotheses (because the

algorithm would consider the possibility that the robot has
Posterior Probability - Correct Hypothesis (Experiment 2) .

1 : : ‘ : : : : turned down an incorrect edge).
2 0 1 Despite the fact that our pruning rules are conservative by
£ os 1 design, there is still a non-zero chance of eliminating the t
g ] hypothesis. If this happens, it is still possible for thecalg
g Oj 1 rithm to recover in the following way. The hypotheses that
b) ° o 0 s me 0 w0 0 a0 a0 500 were not pruned are incorrect, and therefore will evenyuall

Edge Traversals

prove inconsistent with the data. The algorithm will prune

Fig. 6. (a) This is a plot of the number of hypotheses througho theése hypotheses as well, leaving zero remaining hypathese
Experiment 2. (b) This is a plot that shows the posterior pbally tracked  in the tree. In this case, the algorithm can revive the next
for the correct hypothesis during Experiment 2. best branch in the tree from a previous time step and replay

beginning of the experiment, the number of hypothesd§€ measurement sequence as if it were never pruned.
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