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Abstract— Perceptual aliasing makes topological navigation
a difficult task. In this paper we present a general approach
for topological SLAM (simultaneous localisation and mapping)
which does not require motion or odometry information but
only a sequence of noisy measurements from visited places. We
propose a particle filtering technique for topological SLAM
which relies on a method for disambiguating places which
appear indistinguishable using neighbourhood information ex-
tracted from the sequence of observations. The algorithm aims
to induce a small topological map which is consistent with the
observations and simultaneously estimate the location of the
robot.

The proposed approach is evaluated using a data set of sonar
measurements from an indoor environment which contains
several similar places. It is demonstrated that our approach
is capable of dealing with severe ambiguities and, and that it
infers a small map in terms of vertices which is consistent with
the sequence of observations.

I. INTRODUCTION

A goal of intelligent robotics research is to develop mobile
robots which are capable of autonomous navigation. The
practicality of such a robot is a function of its ability to
use map-based navigation to accomplish its mission [1]–[3].
If the environment is unknown, map-building navigation is
required where the robot performs simultaneous localisation
and mapping (SLAM) [2]–[6].

There are two approaches to computing an internal rep-
resentation of a robot’s environment: Metric and topolog-
ical [2], [3]. Metric maps usually capture the geometric
properties of the environment [2], [3]. In contrast, a topo-
logical map is an abstract and compact representation of the
environment that captures key places and their connectivity
for localisation and navigation. Sensory data is used to
characterise a place through a fingerprint.

For both map inference and localisation, probabilistic
approaches have been successfully applied for dealing with
the perceptual aliasing problem which lets different parts in
the environment appear indistinguishable to the robot. This
phenomenon occurs as sensors may supply insufficient data
to identify the current state of the world because of mea-
surement uncertainties inherent to robot perception, limited
field of view (aperture problem) and repeated structures in
the environment. Perceptual aliasing makes it difficult for a
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robot to decide when it is visiting a new place or revisiting
a memorised place (loop closing) [2], [6].

A. Contribution

In this paper we present an approach for topologi-
cal SLAM using purely allothetic information. We suppose
the robot cannot sense any metric information such as
odometry or other inertial sensory measurements and we do
not make use of the motion actions the robot performed. Our
approach presents a general method for topological SLAM
and is not restricted to the assumption of purely visual
information. However, in order to demonstrate the capability
of our approach for dealing with severe perceptual aliasing
we use allothetic observations only [7].

In particular, we are interested in the problem of loop
closing in environments which contain physically different
places which appear to be the same. We approach this
problem using Bayesian inference to estimate the posterior
distribution on topological maps while simultaneously deter-
mining the place the robot currently occupies. The inference
method deals with perceptual aliasing by distinguishing simi-
lar places on the basis of neighbouring information [8]. Local
neighbourhood structures are obtained from the sequence
of visited places which is recorded while exploring the
environment.

A particular problem is that the number of places is not
known in advance. Even if we know the number of places
in advance, disambiguation is still difficult unless every
place appears different. We propose to solve this ambiguity
according to Occam’s razor principle1 by constructing a
small map in terms of places that best explains the sequence
of visited places.

B. Related Work

SLAM approaches usually use statistical methods due
to the inherent uncertainty and noise in robot perception.
Popular are Extended-Kalman-Filter (EKF) based SLAM
algorithms [6], [9]. In an EKF the motion model and ob-
servation noise are assumed to be independent: the sensory
noise is a function of the sensor physics, and is independent
of the robot’s motion noise. Monte-Carlo or approaches like
FastSLAM [6] are computationally efficient, mapping up to
thousands of landmarks while using the EKF for landmark
location estimation. These techniques have mainly been
implemented in conjunction with metric maps as they require
a motion model of the robot to exhibit their functionality.

1”Entia non sunt multiplicanda praeter necessitatem” or ”Entities should
not be multiplied unnecessarily”. William Occam (1285-1349).



In topological approaches a motion model is difficult
to apply because of the abstract representation of the en-
vironment. Hence, in topological SLAM approaches the
localisation part refers to the correspondence problem, that
is to recognise previously visited places. Hence, research
in topological mapping has for the most part been con-
cerned with a particular aspect of the perceptual aliasing
problem. Noisy data sampled at low frequency can cause
the robot to perceive fingerprints from distinct places as
being non-distinct. In order to simplify the correspondence
problem, topological mapping approaches aim to improve
the distinctiveness of fingerprints of places [10]–[12]. These
approaches do not properly address situations where places
are indistinguishable even with perfect sensing.

The robot’s perceptual abilities can be supported using
metric information gained from odometry measurements [4],
[13]–[16]. However, odometry information is known to be
liable to cumulative errors, especially on non-solid and
slippery surfaces such as gravel or uneven terrains.

Ranganathan and Dellaert introduced the concept of prob-
abilistic topological maps which, which is a sample-based
representation that approximates the posterior distribution
over topologies given the available sensor measurements.
Mapping is performed through the use of Markov-Chain
Monte Carlo based Bayesian inference over the space of
all possible topologies [15]. While probabilistic topological
maps are a general concept for mapping they are not capable
of dealing with repeating structures in the environment.

Werner et al. use neighbourhood information to disam-
biguate places which appear identical to the robot [8].
Their work examines the approach of using neighbours for
disambiguation in terms of applicability and scalability on
randomly created, artificial graphs by simulating determin-
istic observations. In this paper, we exploit the idea of
using neighbourhood information to disambiguate places for
topological SLAM from a sequence of noisy observations of
visited places.

The remainder of this paper is organised as follows:
Section II introduces terms and notations which are required
to describe our method for topological SLAM. In Section III
our algorithm for inferring a topological map and estimating
the robot’s location using Bayesian inference is described in
detail. Section IV presents results from experiments and the
paper is concluded with a discussion section.

II. NEIGHBOURHOOD INFORMATION FOR TOPOLOGICAL
MAP INDUCTION

A topological map is represented by a labelled graph G =
(V,E,L), where vertices represent places and edges reflect
the connectivity between places. The labels of vertices refer
to fingerprints which characterise the place in terms of sensor
data. Each vertex is mapped to a label in L

L : V→ L. (1)

If the environment contains perceptual aliasing, several ver-
tices are mapped to the same label so |L| < |V|, where |X|
denotes the cardinality of set X.

Definition 1: Vertices x and y of a graph are called aliases
iff they map to the same label. That is, if L(x) = L(y).
We denote the graph which represents the topology of
the environment Genv (environment graph) and the robot’s
corresponding internal representation Gmap (map graph).
The environment graph is unknown and the only available
information about it is a finite historyH = (l1, l2, ...) ∈ L∗env
of labels of visited vertices obtained from the traversal of the
environment graph (Here, * is the Kleene star).

A. Local Adjacency Information: n-Grams

Our method exploits the neighbourhoods of vertices to
disambiguate aliases.

Definition 2: The k-neighbourhood of a vertex v ∈ V
in a labelled graph G = (V,E,L) is the sub-graph of G
induced by the vertices at distance at most k from v in G.
The parameter k is called the depth of the neighbourhood.
The vertex set and the connectivity of Genv are unknown.
However, the history H provides information indirectly
about Genv . Local neighbourhood information is contained
in the history and is accessed through sequences of length n.

Definition 3: A sequence of labels of length n is called
n-gram.
Consecutively visited vertices correspond to consecutive la-
bels in the history and, reciprocally, consecutive labels in
the history correspond to adjacent vertices in Genv . The set
of n-grams obtained from a history can be considered as a
feature space on the history.

Definition 4: The set of all n-grams which can be ex-
tracted from the history H is denoted GramsH(H,n).
The number of distinct n-grams which can be extracted from
a history of length m is at most m−n+ 1. Thus, the set of
n-grams which is used as input data for topological inference
grows linearly with the length of the history. The length of
the history can be arbitrary and we assume that it covers all
possible n-grams which can be observed from traversing an
environment graph.

Given a topological map graph Gmap we can generate
a history Hmap by traversing the map graph. The set of
n-grams which can be extracted from all such histories
corresponds to a features space on the map graph.

Definition 5: The set of all n-grams which can be ob-
tained by traversing a topological map graph G is de-
noted GramsG(G,n).

history: H =< A,B,C,A,E,D,A,B,E,A,C,B,E,D,A,B,C >
GramsH(H, 3) =
{<A,B,A>,<A,B,C>,<E,B,A>, <A,D,A>,<E,D,A>,<B,A,B>,
<D,A,B>,<B,C,B>,<A,C,B>, <B,E,B>,<D,E,B>,<B,E,A>,
<C,B,C>,<C,B,E>,<C,A,C>, <C,A,E>,<D,A,D>,<D,E,D>,
<A,E,D>,<E,B,E>,<E,D,E>, <E,A,E>,<A,C,A>,<A,E,A>}

TABLE I
AN EXAMPLE OF A POSSIBLE HISTORY h THAT COULD BE OBTAINED

FROM THE ENVIRONMENT GRAPH IN FIGURE 1(B) AND THE SET OF

3-GRAMS EXTRACTED FROM THE HISTORY. NOTE, WE ALLOW THE

ROBOT TO PERFORM U-TURNS.
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(c) Incorrect map graph.

Fig. 1. (a) Fictional example environment. The labels A,B,C,D and E denote the view the robot perceives in a particular room. (b) Topological map
of the example environment. The vertices are labelled with characters which denote the label (sensor view) of the vertex. The number annotated to each
vertex bottom right denotes the index of the vertex. Note the two aliases, labelled A (vertices 1 and 4).

An example environment graph in shown in Figure 1(b).
A possible history obtained from traversing this environment
graph and, the extracted 3-grams from this history are shown
in Table I.

B. n-Consistency

In order to achieve reliable navigation, a robot requires
an internal representation that exhibits the properties of the
environment with respect to the selected representation (e.g.
topological). Consequently, it is desirable that a map graph
is isomorphic with the environment graph.

A necessary condition for the map graph to be isomorphic
to the environment graph is that there is a bijective mapping
such that each k-neighbourhood of the map graph corre-
sponds to a k-neighbourhood of the environment graph and
each k-neighbourhood of the environment graph corresponds
to a k-neighbourhood of the map graph. However, in our
case it is not possible to compare k-neighbourhoods of the
map graph directly with k-neighbourhoods in environment
graph as the latter is unknown. Consequently we propose to
measure the n-consistency of graphs in their feature spaces;
that means, the sets of n-grams of the graphs.

Definition 6: Two sets of n-grams Γ0 and Γ1 are n-
consistent, where n > 1, iff Γ0 = Γ1.
According to Definition 6 two entities which induce n-grams,
such as graphs or histories, are n-consistent if they share the
same set of n-grams. The n-consistency concept realises the
idea of k-neighbourhoods of vertices (see Definition 2) on
histories if n = 2k + 1.

For noisy data we measure the degree of n-consistency of
two sets of n-grams Γ0 and Γ1 using the Hausdorff distance

dH(Γ0,Γ1) = max(max
α∈Γ0

min
β∈Γ1

d(α, β),max
β∈Γ1

min
α∈Γ0

d(β, α)).

(2)
The smaller the Hausdorff distance the more n-consistent
are Γ0 and Γ1. The distance of two n-grams α and β is
computed using the maximum norm

d(α, β) = ||α− β||∞ = max
k=0,...,n−1

(|αk − βk|). (3)

Thus, the distance between two sets of n-grams is determined
by the largest distance of two fingerprints which are mapped
to the same vertex in a map graph.

C. n-Consistency and Map Size

In parametric methods there may be various candidate
models, each with a different number of parameters to
represent the data. The likelihood of the model to represent
the data is increased when the number of parameters in the
model is increased. In our case, a map graph which consists
of one vertex for each n-gram in GramsH(Henv, n) is
consistent according to Definition 6 but is inappropriate for
navigation as too many vertices would be required.

III. TOPOLOGICAL SLAM

In this section we describe our method for topologi-
cal SLAM from a sequence of visited places. We suppose
the robot has explored an environment and recorded a
history H1:T = l1, ..., lt of fingerprints of visited places.

We suppose the robot has some prior knowledge about
the environment given in a set Γenv = GramsH(Henv, n) of
n-grams which may be obtained in an earlier exploration by
traversing every intersection from every possible direction.
The set Γenv only contains information about the connectiv-
ity but does not comprise information about the number of
places in the environment.

In the following we describe a method for topological
map inference using a particle filter which embeds the
disambiguation using neighbourhood information.

A. Map Likelihood Estimation using a Particle Filter

Particle filters are sequential Monte-Carlo methods used
for Bayesian model inference. Bayesian filters probabilisti-
cally estimate a dynamic system’s state from noisy observa-
tions. Here, the system state st = {Gt

map, p
t} of the world

comprises the topological map Gt
map and the place pt the

robot visits. We are interested in computing the posterior
PDF (probability density function) P (st|H1:t,Γenv) over the
state at the time step t given all the measurements up to
the current time. Particle filters model the PDF on the state
in a Monte-Carlo fashion using a collection {sit, wit}Ni=1 of
weighted particles. Particles are denoted sti and the wti are
non-negative weights, called importance factors which are
normalised such that

N∑
i=1

wti = 1. (4)



In order to perform topological SLAM we need to recursively
compute the density P (st|H1:t,Γenv) at each time step. This
is done in two phases:

1) Prediction Phase: In the prediction phase a transition
model is commonly used to predict the new state of the
system at t+ 1 using a predictive PDF P (s̃t+1|H1:t,Γenv).
The transition model is specified as a conditional den-
sity P (s̃t+1|st,ut) and is dependent on the previous
state st (Markov) and a known control input ut. Because
we assume the motion of the robot is not known it is not
possible to predict the place the robot visits next. Hence,
we model the transition density P (s̃t+1|st,ut) by generating
a collection of predictions {s̃t+1

i,k }
K+1
k=1 for each particle sti,

where k indicates the vertex the new observation is predicted
to correspond to and K refers to the number of vertices
contained in the map graph particle sti holds.

An edge is added between the vertex the robot currently
visits and the vertex the robot is predicted to visit next in
case that particular adjacency does not exist yet.

2) Update Phase: In the update phase a measurement
model is used to incorporate information from the sensors to
obtain the posterior PDF P (st+1|H1:t+1,Γenv). We assume
the measurement model is given in terms of a measurement
likelihood P (Ht+1 |̃st+1

i ,Γenv) which expresses the likeli-
hood that the topological map and the location comprised in
the prediction s̃ti corresponds to the true map and location.
The posterior density over st+1 is then obtained using Bayes
theorem:

P (st+1|H1:t+1,Γenv) ∝
P (Ht+1,Γenv |̃st+1)P (s̃t+1|H1:t,Γenv).

(5)

In our particle filter approach the measurement likelihood is
computed by weighting the samples

wti = P (Ht+1,Γenv |̃st+1)

= P (Ht+1 |̃st+1
i )P (Γenv |̃st+1

i )P (s̃t+1
i ).

(6)

The factor P (Ht+1 |̃st+1
i ) computes the likelihood of the

measured label Ht+1 and the label l̃k of the vertex k which
refers to the predicted new location p̃t+1

i of the robot in
particle s̃t+1

i to be identical

P (Ht+1 |̃st+1
i ) = exp

−(Ht+1 − l̃k
σl

)2
 (7)

where σl denotes a weighting factor.
The second factor in Equation 6 expresses the likelihood

that the graph in particle s̃t+1
i is n-consistent with the infor-

mation given in the history. Using Equation 2 the consistency
likelihood is computed with

P (Γenv |̃st+1
i )=exp

−(dH(Γenv, Γ̃t+1
i

σc

)2
 (8)

where Γ̃t+1
i = GramsG(G̃t+1

i , n). In order to address the
conflicting interests of inferring the a map in terms of vertices
that explains the history well, we seek to find a compromise

Fig. 2. Penalty function to avoid maps containing many vertices.

that the data and map space allow. Hence, the last term in
Equation 6 penalises map graphs which contain vertices with
similar labels

P (s̃t+1
i ) =

A∏
a=1

A∏
b=1

1− φ exp

−( l̃a − l̃b
σl

)2
 (9)

where φ weights the influence of the penalty and l̃a, l̃b ∈
L̃t+1
i , A = |Ṽt+1

i | and L̃t+1
i and Ṽt+1

i refer to the set of
labels and vertices of the predicted map graph comprised in
particle s̃t+1

i , respectively. The penalty function for φ = 1 is
displayed in Figure 2.

The posterior distribution on topological maps is computed
by drawing N samples from the proposal distribution.

B. Localisation

The place pt the robot occupies is implicitly estimated
whenever the map graph is updated with a new observation.
The vertex whose label is updated or additionally introduced
using the observation indicates the new location of the
robot. If a new vertex is introduced the robot is hence
located at the place which corresponds to that vertex. The
location, in turn, is used to guide the mapping process by
introducing adjacencies between the current and the previous
place occupied.

IV. RESULTS FROM EXPERIMENTS

Our experimental set up covers an indoor office environ-
ment area of about 20,000 square meters (Wean Hall at
Carnegie Mellon University), see Figure 3. The experimental
platform uses a panoramic camera and an ultrasonic sensor
array to acquire information about the environment.

A. Place Identification using GVG

The experimental platform traverses the environment using
the generalised Voronoi graph (GVG) strategy developed
by Choset and Nagatani [4]. It is based on the Voronoi
diagram which is a special kind of decomposition of a metric
space into segments and nodes determined by distances to
a specified discrete set of objects in the space. Our robot
measures distances using sonar readings.

Segments capture the points in the plane that are equidis-
tant to two sites. Travelling along the Voronoi segments, the
robot can keep in the middle of corridors while exploring the
environment. The Voronoi nodes are the points equidistant
to three (or more) obstacles.

In our system, the Voronoi nodes define the places in the
environment and the range measures of the sonar sensors
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Fig. 3. The floor plan of Wean Hall Floor 6 at Carnegie Mellon University.
Embedded is the topological graph (vertices and their connectivity) that
reflects the ground truth of the topological map that we wish the SLAM
algorithm to infer. Moreover, the travelled path of the robot is displayed.
The circles show the distance measure from the locus point to the closest
obstacles which we use as fingerprints of the places.

to the closest obstacles at these locus points represent the
fingerprints of the places. The fingerprint may be interpreted
as the radius of the largest obstacle free disc that can be
drawn around the locus points of Voronoi nodes.

We have conducted several exploration runs and recorded
a total of 105 fingerprints of places and stored them in a
data base (see Table II). It is apparent that the environment in
conjunction with the very basic description of places contains
numerous topological ambiguities. In fact, the environment
contains eleven places but only four categories of finger-
prints, resulting in a challenge for topological mapping and
localisation algorithms. For example, places 1 and 2 appear
similar to the robot as do places 3 and 4 or places 2, 5, 6, 7
and 10.

B. Results

Given the data base and the ground truth environment
graph, we can simulate arbitrary traversals of the environ-
ment. The robot starts at an initial vertex and selects an
arbitrary adjacent vertex as next place. According to the ver-
tex the robot occupies, a random observation from the data
base is sampled. For the following evaluations, 500 paths
of length 100 were generated. Each path represents an
exhaustive exploration of the environment. For each path the
set Γenv of n-grams is derived before starting the algorithm.
Note, it is actually not necessary to assume an exhaustive
exploration of the environment as the inferred map is a
representation of the environment which is consistent to the
measurements at a certain time.

It was shown by Werner et al. that environments which
contain many repeated places require a higher level of consis-
tency [8]. Hence, for the following evaluations, the mapping
part of our approach aims for 5-consistency between the
inferred topological map and the information given in the
history of observations.

Our approach to topological mapping aims to build an in-
ternal representation which is consistent with the information
given in the history. The consistency is measured through the
Hausdorff distance (Equations 2 and 3) between the sets of
n-grams which are derived from the history and the inferred
map graph. Figure 4 shows a histogram of the 5-consistency
measure of the inferred maps of the simulated random
traversals. It can be seen that most of the inferred maps are
very consistent with the information from the history. The

maximum consistency error of the fingerprints of vertices
contained in the map and the corresponding observations
is mostly less than 10cm which can be explained with the
inherent uncertainties associated with sensory perception.
The rare outliers may occur when the mapping process is
misled so that the inferred map is inconsistent with the
observations.

As mentioned earlier, a topological map that maximises
the consistency between the inferred map and the history
would contain a vertex for every observation. We penalise
topological maps which contain vertices with similar labels
to obtain small map graphs in the number of vertices.
Figure 5 shows the number of vertices of the inferred maps
using φ = 0.1 as penalty parameter. The clear peak of
the histogram shows that most of the maps our algorithm
induced require eleven vertices what corresponds to the
ground truth (see Figure 3). It seems the algorithm does
not infer smaller maps as they would violate the con-
sistency criterion and hence yield low probability. Larger
maps indicate an additionally introduced vertex so the map
erroneously contains two vertices which represent the same
place in the environment. Erroneously introduced vertices
occur due to measurement noise and, as the sampling of
new map candidates from a posterior distribution can sample
map candidates which are not optimal and so create larger
maps. At the moment our system cannot recover from this
problem. In general, a smaller penalty parameter on the
number of vertices results in larger maps whereas a high
penalty parameter decreases the map size but may increase
the consistency error.

The overall goal in topological mapping is to build an in-
ternal representation which is isomorphic to the environment.
Here, we investigate whether the inferred map graphs are
isomorphic to the environment graph in order to measure the
quality of the proposed approach for topological mapping.
We found all map graphs with the same number of vertices as
the environment graph to be isomorphic to the environment
graph. For the evaluations we used 10 samples to represent
the posterior distribution on topological maps. Increasing the
number of samples results in a higher ratio of isomorphic

id Recordings Mean [m] Var
1 13 1.1713 0.0121
2 11 1.3600 0.0069
3 11 2.1641 0.0179
4 9 2.1624 0.0077
5 9 1.3350 0.0107
6 7 1.2695 0.0255
7 8 1.3104 0.0008
8 7 1.4983 0.0024
9 10 1.6768 0.0134

10 10 1.3537 0.0009
11 10 1.1606 0.0110

TABLE II
DATA BASE OF SONAR READINGS RECORDED FROM SEVERAL

TRAVERSALS OF THE EXPERIMENTAL ENVIRONMENT. THE IDS OF THE

PLACES CORRESPOND TO FIGURE 3.



Fig. 4. The consistency of the inferred topological maps and the
corresponding simulated histories is displayed. It is to see that most of
the inferred maps have only small consistency errors which occur due to
measurement noise.

Fig. 5. The number of vertices of the induced maps are shown for the
simulated histories. A clear peak for 11 vertices is to see what corresponds
to the environment graph (see Figure 3).

maps, however, requires more computational resources. The
results support the strategy of the proposed algorithm to use
the current position estimation with the new observation to
map the connectivity of the environment.

Our method for topological SLAM implicitly localises
the robot. The particle filter technique we use requires to
predict the next observation and hence essentially predicts
the location the robot visits next. Reliable localisation is
crucial as the location directly governs the connectivity
inference. The localisation performance of our method is
hence implicitly evaluated through the resulting topological
maps. For the resulting maps which are isomorphic to the
environment graph the location of the robot must always be
estimated correctly.

V. DISCUSSION

In this paper we have proposed a Bayesian approach for
topological SLAM that does not require any motion model or
metric information, but uses a history of noisy measurements
from visited places only. While we restricted ourselves to
sonar measurements only, the presented approach for topo-
logical SLAM allows to include further information sources
which may help to increase the quality of both, induced maps
and localisation of the robot.

We use a particle filter based SLAM approach to deal with
both measurement noise perceptual aliasing. The posterior
distribution on topologies aims to maintain consistency with
the observed data while minimising the number of vertices
contained in the map. The consistency between a topological
map and the observations is measured using the Hausdorff
distance.

Experiments in an indoor environment which is subject to
severe ambiguities due to repeated structures demonstrate the

merit of the idea to use neighbourhood clues in order to dis-
ambiguate otherwise identical vertices. Our approach mostly
infers topological maps with only small inconsistencies with
respect to the data. Moreover, many of the resulting maps
are isomorphic to the environment graph.

While we used sonar data only for evaluation, our ap-
proach presents a general frame work for topological map
inference and allows to incorporate odometry observations
or information about the motion actions of the robot for
enhancing the transition model of the robot.
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