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Abstract— This paper presents a hybrid localization scheme
for a mobile robot using the hierarchical atlas. The hierarchical
atlas is a map that consists of a higher level topological graph
with lower level feature-based metric submaps associated with
the graph edges. Our method employs both a discrete Bayes
filter and a Kalman filter to localize the robot in the map.
This framework accommodates localization in a map with
no prior information (global localization) and localizati on in
a map with an incorrect pose estimate (kidnapped robot).
Our approach efficiently scales to large environments without
sacrificing accuracy or robustness. We have verified our method
with large-scale experiments in a multi-floor office environment.

I. I NTRODUCTION

Accurate and reliable mobile robot localization is essential
for tasks such as autonomous navigation and exploration.
If a robot is lost or uncertain about its location in the
environment, it must infer its pose based on exteroceptive
information. For most localization techniques, this is accom-
plished by estimating a probability distribution over possible
robot poses in a map. When one location hypothesis domi-
nates the probability distribution, usually due to sufficiently
informative measurements, localization is complete.

Existing solutions using metric maps accurately localize
the robot to any position in the environment without any prior
pose information. However, for a fine resolution, the compu-
tation and storage requirements can become intractable for
large environments. On the other hand, methods that employ
topological maps scale efficiently in storage and computation
with environment size by limiting localization to topological
node positions. Unfortunately, this gain in efficiency comes
at the cost of detailed environment information.

We present a hybrid solution to mobile robot localization
that couples a discrete Bayesian filter for localizing on a
topological graph with a continuous Kalman filter for localiz-
ing metrically within submaps. Our method is implementable
for real-time, large-scale, indoor applications and solves two
different scenarios of localization: the global localization
problem (when a robot is given a map but has no prior
pose information) and the kidnapped robot problem (when a
robot is given a map and currently maintains an incorrect
estimate of its pose in the environment). Decomposing
the environment into submaps, for this hybrid method, is
based on thehierarchical atlas[1], a topological graph with
feature-based metric submaps attached to the graph edges.
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In this paper, we first derive our hybrid localization method
and provide motivation for its use with the hierarchical
atlas. Then, after providing details of the implementation,
we present an extensive experiment that covers 6 floors of a
large office building with multiple cases of topological and
feature-based ambiguities.

II. BACKGROUND

A. Localization Strategies

When addressing the task of localization, every approach
must maintain and update a representation of the robot pose
probability distribution. Many approaches define the state-
space as the continuous spatial dimensions of the environ-
ment. A traditional technique for location estimation is touse
Kalman filters. Due to the necessity for a multi-modal distri-
bution when solving the robot localization problem (caused
by observation ambiguities and initial location uncertainty),
several approaches choose to allocate multiple Kalman fil-
ters: one for each initialized location hypothesis [2], [3].
These multi-hypothesis tracking algorithms do not provide
a bound to the number of initialized hypotheses and often
initialize additional filters for failed data associations. Also,
due to odometric error in large-scale maps with limited
features, false measurement associations may occur which
could potentially result in the robot’s false overconfidence in
an incorrect pose hypothesis.

Markov localization [4] also attempts to localize the robot
spatially in the environment. The method first discretizes the
environment with some desired resolution, then assigns a
probability to every state. The number of statesS resulting
from this discretization depends on the desired resolutionand
the environment scale, and processing this representationhas
an O(S) complexity [4]. This method does not scale well
for a fine resolution in a large environment. Monte Carlo
localization [5] also uses an environmental discretization as
its state space, but represents the probability distribution with
a set of weighted representative samples of the state space,
called particles. The update ofM particles can be imple-
mented with complexityO(M) [5]. However, representing
the initial uniform distribution of robot pose probability
requires a sampling of particles over the entire state space.
Since the convergence of this method depends on initializing
at least one particle near the true robot pose, the number of
particles increases with increased environment size.

Topological methods discretize the environment to a min-
imal number of abstract nodes in a graph. Thus, topological
state space representations generally scale well with environ-
ment size. A common method is to use topological features
to localize a robot to a node in the graph. Unfortunately,
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Fig. 1. One of six floors collectively mapped using the hierarchical atlas, which is embedded onto the floor plan of Wean Hall Floor 7 at Carnegie Mellon
University. Nodes are shown with circles and landmarks mapped along edges are shown with red (dark) ellipses.

similarity in topological nodes is common, and additional
information is necessary to resolve ambiguities. The choice
of detailed information attached to the topology varies by
implementation, as does the representation of the robot pose
probability distribution. Some researchers apply Markov
methods [6]–[8], while others applygraph-matching[9]–
[11], which uses observations of neighboring nodes to prune
a set of candidate locations. The complexity of topological
methods varies with the implementation.

B. Hierarchical Atlas

Originally presented to address simultaneous localization
and mapping, the hierarchical atlas combines the scalability
of a topological representation with the detail of feature-
based metric maps. The atlas uses a topology to decompose
the space into submaps which are tractable by conventional
metric mapping methods. This allows for a high resolution
representation of the free space while maintaining low com-
putation and storage costs for localization and navigation.

The topology used by the hierarchical atlas is based on
the generalized Voronoi graph (GVG) [9], the locus of
points equidistant to two or more obstacles, whose nodes
have a definite location in the free space and whose edges
define obstacle-free paths between neighboring nodes. This
topology is both abstract and embedded in the free space,
and as such can be traversed using sensor-based control.
Attached to each graph edge is a feature-basededge map.
Both the topological decomposition of an environment and
the corresponding edge maps can be seen in Fig. 1.

There have been other mapping strategies which decom-
pose a large environment into submaps [12]–[14]; in fact
the term “atlas” originates in [14]. However, the topology of
these approaches are not necessarily navigable using sensor-
based control, nor embedded in the free space by definition.

In [1], we introduce global localization for the hierarchical
atlas. The robot maintains a list of candidate topological
states and gathers information while traversing the graph.
States that do not “match” the exteroceptive observations

are pruned based on a naive yes/no heuristic until only one
candidate remains. We have extended this work with the
proposed hybrid solution to allow for accurate metric local-
ization and, more importantly, to provide a robust Bayesian
framework that, in our experiments, provides a significant
improvement when handling map ambiguities and kidnapped
robot situations.

III. H YBRID LOCALIZATION

One contribution of this work is the following formulation
of mobile robot localization as a multi-hypothesis estimation
problem in a hybrid state space: a discrete componentmk

identifies in which submap the robot currently resides among
all submaps of a global map, and a continuous componentXt

defines the relative metric pose of the robot in the coordinate
frame of that submap. The time step,t, is a variable related
to the elapsed time since the robot switched discrete states
(or equivalently, when the robot transitioned between two
submaps). Additionally,k is a discrete time step variable
that increments when transitioning between submaps.

A. Separating the Task

To localize the robot, we must maintain a probability
distribution over this hybrid state space, where the stateswith
a higher probability correspond to likely robot locations.The
probability of a hybrid state[mk, Xt] can be expressed as

p(mk, Xt|u
k−1, vt−1, zk, yt, Θ), (1)

where uk−1 is the collection of discrete motion inputs
(u0,u1,...,uk−1) that have been applied since the robot began
an experiment. Each of these inputs causes the robot to
change to a new discrete state and therefore increment the
discrete timestep variablek. A right or left command at
a hallway intersection that causes the robot to turn onto
a different GVG edge (and therefore transition to a new
submap) is an example of such a discrete motion input.
Likewise, vt−1 is the collection of all continuous motion
inputs (v0,v1,...,vt−1) that are integrated while the robot is
traveling within submapmk. A vector of wheel velocities



or motor voltages is an example of such an input. The
collection of measurement vectors is denoted byzk, where
(z0,z1,...,zk) is obtained within submaps (m0,m1,...,mk)
respectively. Finally,yt is the collection of measurements
(y0,y1,...,yt) observed while the robot travels within submap
mk. We note that a single submap measurementzk will
include all measurementsyt. The map used for localization
is represented byΘ.

The joint probability in Eq. 1 can be manipulated through
the definition of conditional probability to obtain

p(mk, Xt|u
k−1, vt−1, zk, yt, Θ) =

p(mk|u
k−1, vt−1, zk, yt, Θ) ×

p(Xt, |mk, uk−1, vt−1, zk, yt, Θ). (2)

The first term on the right side is a discrete probability
distribution over possible submapsmk. The second term is
a continuous probability distribution over the relative metric
pose of the robot given submapmk. In this section, we will
show that the first term can be estimated with a recursive
Bayesian filter and the second term can be reduced to mobile
robot tracking. This is similar to a multi-hypothesis tracking
solution, except with one key advantage: the hypothesis size
is bounded by the number of submaps in the environment.
In many cases, this will provide a significant computational
advantage over other methods.

B. Discrete Bayesian Submap Filtering

We have shown that estimating the probability distribution
over possible hybrid robot states can be separated into two
tasks. The first task is to estimate a discrete probability
distribution over possible submaps. When one value in this
distribution approaches one, we can be confident that the
robot is currently positioned somewhere in that correspond-
ing submap. The discrete distribution component of Eq. 2
can be simplified to

p(mk|u
k−1, zk, Θ). (3)

We will leave outvt−1 because this term refers to motion
inputs within submapmk, not motion inputs that influence
discrete state transitions. We are not necessarily assuming in-
dependence by dropping this term, though. Any information
inferred byvt−1 that is correlated withmk can be included
as a measurement inzk. For example, we later compute a
path length statistic from the motion inputsvt−1 and include
this as a measurement when updating the discrete probability
distribution overmk. Additionally, we can omityt because it
is subsumed byzk. Using Bayes law, Markov independence,
and the law of total probability, we can rewrite Eq. 3 as
follows:

p(mk|u
k−1, zk, Θ) =

p(zk|mk, Θ)

p(zk|uk−1, zk−1, Θ)
×

∑

mk−1

p(mk|mk−1, uk−1, Θ)p(mk−1|u
k−2, zk−1, Θ).

This produces a recursive update rule for the discrete prob-
ability distribution, which is now in the form of a mea-
surement model, a motion model, and a prior.mk−1 is the

submap in which the robot was previously located. It is
important to note that the motion model we adopt for this
recursive update rule involves the probability of making a
discrete transition between two submapsmk−1 andmk. For
example, when using the hierarchical atlas, an appropriate
motion model may represent the probability of turning to
the correct GVG edge. This is unlike conventional motion
models in which metric location uncertainty is propagated
and dispersed to accommodate for odometric error.

C. Relative Metric Pose Estimation

The next task is to estimate a continuous probability
distribution for the relative metric poseXt within submap
mk. The corresponding term in Eq. 2 can be simplified to

p(Xt|mk, vt−1, yt, Θ). (4)

One assumption that we make is that a mobile robot, when
making a transition from submapmk−1 to submapmk, will
be located at the origin of the latter when the transition
occurs. Although not common for all submap techniques,
this is the case when adopting the hierarchical atlas. This
is because all submaps in the hierarchical atlas are defined
between GVG nodes, so the termination and beginning of
submaps always coincide. We can ignoreuk−1 in Eq. 4
because these motion inputs are applied at the boundaries of
submaps and therefore have no bearing on the estimation of
the relative poseXt within the submap. We can also ignore
zk because all previous measurements have no bearing on
the relative pose estimate if it is known exactly att = 0
and all relevant current measurements in the vectorzk are
present inyt.

In our case, knowing the relative pose exactly when the
robot makes a discrete transition between two submaps
provides the following key advantage:p(Xt|mk, vt−1, yt, Θ)
can be estimated with a tracking based technique throughout
the time the robot is located within the submap. Tracking
can be solved efficiently using a unimodal filter, such as
a Kalman filter. It can now be seen that our estimation
technique is related to multi-hypothesis tracking, with the
advantage that we must track at most one estimate per
submap. This is useful when the number of submaps is small
relative to the area of a given map.

IV. PROBABILISTIC MODELS FORLOCALIZATION

In this section we will define the state space, motion
model, and measurement models that are used when specif-
ically applying the hybrid localization technique to the
hierarchical atlas.

A. State Space

We define the discrete state and continuous metric state as

mk =

[

nk

ek

]

and Xt =





xt

yt

φt.





respectively. Index,nk, is the GVG node to which the robot is
heading andek is the index of the edge the robot is traversing
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Fig. 2. A typical submap with appropriate labels to demonstrate the state
space used for localization.

(relative to a reference edge of nodenk). The origin of the
submap is defined by the location of nodenk−1, and the
coordinate frame of the submap is defined so as to align the
locations of both the departure and arriving nodes on thex-
axis. The robot pose in the submap is denoted byxt, yt, and
φt all in the local coordinate frame.

Fig. 2 depicts one possible submap and demonstrates the
specific state space representation used for this localization
method. We note thatek is equal to one for this example
because it is offset by one in the counter-clockwise direction
from the reference edge (drawn with an arrow).

B. Measurement Model

The measurementzk is a vector of all exteroceptive infor-
mation gathered during timestepk that can help distinguish
candidate submaps. The specific measurement vector used
for this paper is composed of the following discrete and
continuous measurements:

δ̂k → Node Degree
ε̂k → Node Equidistance
d̂k → Edge Travel Distance
f̂k → Feature Map Landmark Locations

Each of these terms will be precisely defined in the subsec-
tions that follow.

The measurement model is defined:

p(zk|mk, Θ) = p(δ̂k, ε̂k, d̂k, f̂k|mk, Θ)

= p(δ̂k|mk)p(ε̂k|mk)p(d̂k, f̂k|mk). (5)

The node degree and equidistance measurements are in-
dependent and therefore can be separated into the first
two terms of Eq. 5. The feature map landmark locations,
on the other hand, are correlated with robot motion, and
therefore correlated with the travel distance. We will now
define each component of the measurement model and their
corresponding probability distributions:

1) Node degree:The number of edges connecting a node
to its neighbors is referred to as its degree. The measured
degreêδk at timestepk is invariant over repeated visitations
to that node, so we definep(δ̂k|mk) accordingly, using
empirical data.

2) Node equidistance value:Nodes in the GVG are
defined as equidistant to three or more obstacles. Thus, when
the robot arrives at nodenk, the distance to its three or more
closest obstacles approaches equality. The mean of these
values is labeled theequidistance value. It is important to

note that the equidistance measurement at each node is stable
over repeated visitations. The hierarchical atlas stores,for
every node, an equidistance value and its standard deviation,
which together represent a Gaussian distribution. During
localization, an equidistancêεk is measured when the robot
arrives at a node. The probability of observingε̂k given that
the robot has arrived at nodenk is

p(ε̂k|nk) =
1

√

2π(σ2
kε

)
exp

(

−
(ε̂k − εk)2

2(σ2
kε

)

)

.

3) Feature Map / Travel Distance:The robot constructs a
metric feature map while traversing an edge. The map is built
using an extended Kalman filter whose stateŝk consists of
the robot pose, the locations of measured landmarksf̂k , and
the total distance traveled̂dk while traversing the edge. The
filter also produces a covariance matrixP for the measured
feature map. The probability of measurinĝdk and f̂k given
the traversal of submapmk is

p(d̂k, f̂k|mk) =
exp

(

− 1
2 (ŝk − sk)T (P )−1(ŝk − sk)

)

(2π)2N |P |
1

2

.

C. Motion Model

When the robot arrives at nodenk−1 via edgeek−1, it must
choose a new edge to traverse. We defineuk−1 as a command
for the robot to take a specific departing edge relative to the
arriving edgeek−1 of nodenk−1. Therefore,uk−1 defines
the desired submap transition.

Let mk−1
uk−1

→ mk indicate that submapmk neighbors
mk−1 via the departing edgeuk−1, and letmk−1

uk−1

9 mk

indicate that submapmk neighborsmk−1 via a departing
edge unequal touk−1. The motion model we use for discrete
submap localization is

p(mk|mk−1, uk−1, Θ) =











p(uk−1) if mk−1
uk−1

→ mk
1−p(uk−1)

δk−1−1 if mk−1
uk−1

9 mk

0 otherwise.

This represents that the robot traverses the selected edge
index uk−1 with probability p(uk−1), and the remaining
1 − p(uk−1) probability is evenly distributed among all
other edges of the statemk−1. This is to account for
erroneous departures for structurally complicated nodes.In
normal indoor environments with orthogonal edges,p(uk−1)
approaches1.0, which means the robot almost always drives
down the correct edge after leaving a node. For statesmk that
do not neighbormk−1, the probabilityp(mk|mk−1, uk−1, Θ)
is zero. This does not imply that we are ignoring the chance
of passing through a GVG node. Instead, we claim that
such an occurrence is a special case of the kidnapped robot
problem. In fact, the robot accidentally kidnaps itself. Thus,
solving the kidnapped robot problem will be sufficient, which
is discussed in Section V-C

V. L OCALIZATION ON THE HIERARCHICAL ATLAS

A. Global Localization

Global Localization is performed by initializing the dis-
crete state space with a uniform probability distribution.
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Fig. 3. Six floors of Wean Hall at Carnegie Mellon University were used for localization experiments. Here, the node/edgetopological representation is
embedded in a sequence of floor plan images. Arrows designatethe reference edge for each node..

The robot starts in an unknown place in a priorly mapped
environment and is told to run an algorithm so that the robot
is autonomously traversing GVG edges. When the robot
homes into its first node, it can apply a measurement update
(except in this case there is no feature map to compare, so
that component is not included). Then the robot chooses a
departing edge and propagates the motion model. The instant
the mobile robot departs the GVG node and begins traversing
a new edge, the robot has started exploring a new submap and
has begun traveling a path of two-way equidistance toward
another node in the map.

During the edge traversal, the robot estimates the rela-
tive metric posep(Xt|mk, vt−1, yt, Θ) using a conventional
Kalman filter based localization method. This filtering task
is inexpensive because the size of the Kalman filter state is
limited to the degrees of freedom of the robot. On the other
hand, the robot must maintain a bank of these Kalman filters
to estimate the relative metric location: one per submap. If
this turns into a large computational burden for numerous
submaps, the robot should simply wait until the discrete
distribution is better resolved, and then only estimate the
relative metric pose for likely submaps.

While the robot estimates its relative pose in the submap,
it is simultaneously building a feature map using conven-
tional EKF SLAM. This is independent of the relative pose
estimation, and is only for incorporating metric information
into the discrete submap update, as discussed in Sec. IV-B.3.

When the robot arrives at the destination node, it can
apply a full discrete measurement update (using the measured
node equidistance, node degree, and the feature map built
using EKF SLAM during the edge traversal). When the next
motion model is applied, the continuous tracking filters can
be discarded and reinitialized at the origins of each submap.
The robot continues traversing the GVG until a majority of

the probability distribution is concentrated to one topological
state. At this point, the continuous tracking filter associated
with that submap will provide the most likely metric location.

Algorithm 1 Hierarchical Atlas Hybrid Localization
1: InitializeUniform()
2: for k ← 1 to T do
3: TraverseEdge(uk−1)
4: for all mk do
5: p(mk)←

∑

mk−1
p(mk|uk−1, mk−1) p(mk−1)

6: end for
7: p(zk)← 0
8: for all mk do
9: if p(mk) < γ, PruneState(mk)

10: elsep(zk)← p(zk) + p(δk, εk, dk, fk|mk) p(mk)
11: p(mk)← p(δk, εk, dk, fk|mk) p(mk)
12: end for
13: if p(zk) < ǫ, InitializeUniform()
14: elseNormalize()
15: end for

B. Reducing the State Space (Hypothesis Pruning)

The number of discrete states in the discrete probability
distribution is determined by the number of submaps in the
global map. Therefore, the computational complexity will
scale linearly with the number of submaps. One way to
reduce computation is to prune out hypotheses from the state
space if they have a negligible probability. Eliminating one
or more submaps from the state space can often remove a
significant region of the global map, narrowing the search.

if p(mk|u
k−1, zk, Θ) < γ, removemk

This pruning method is an approximation and can be risky
because no matter how unlikely a hypothesis may become,
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Fig. 4. A visual representation of the discrete probabilitydistribution during one trial of global localization. Darker bins correspond to states with higher
probability. Bins that appear faint represent improbable hypotheses that have been pruned from the state space. Each stage represents the following: (a)
initial distribution, (b) initial node update, (c) motion model, (d) second node update, (e) edge update, (f) motion model, (g) node update, and (h) edge
update.

there will still be a non-zero chance that the robot is located
in that submap. By refusing to apply the Bayesian update for
eliminated states, there is no way for the state to regain any
portion of the probability distribution (even when matching
well to map measurements). We argue that this situation is a
special case of the kidnapped robot problem: the robot has
a false estimate of its location (in one of the states that have
not been pruned), when in reality it is located somewhere
else (in one of the pruned states). Therefore, we will choose
to incorporate pruning due to its computational advantages,
but provide a solution to the kidnapped robot problem that
encompasses the issues associated with removing hypotheses
from the Bayesian update. The algorithm for updating the
discrete probability distribution, which includes pruning, is
outlined in Alg. 1.

C. The Kidnapped Robot Problem

The kidnapped robot problem is when the probability
distribution is biased toward one or more incorrect hypothe-
ses. This may happen if there is an unmodeled motion
disturbance: for example, the robot could be physically
picked up and moved to another location, the robot may
skip over a topological node, or the robot may be located
in a pruned state. To detect such an occurrence, we monitor
p(zk), which is the the probability of making a measurement
zk at timestepk. This can be computed as follows (using the
law of total probability):

p(zk) =
∑

mk

p(zk|mk) p(mk).

A small p(zk) value suggests that new measurements do
not agree with any of the submap hypotheses. Therefore,
if p(zk) falls below a threshold, we will conclude that the
robot has been “kidnapped”. At this point, the probability
distribution over possible submaps is reset to a discrete
uniform distribution, and the global localization algorithm

is restarted. The detection of a kidnapped robot is shown in
Alg. 1 on line 13.

VI. EXPERIMENTAL RESULTS

Our localization experiments span six floors of a large
office building environment (Wean Hall at Carnegie Mellon
University), see Fig. 3. This map spans an area of size greater
than 20,000 square meters and contains numerous topolog-
ical and feature map ambiguities, resulting in a rigorous
test for localization algorithms. It should be noted that the
entire map was constructed online prior to any localization
experiments using the hierarchical SLAM method in [1].

Our experimental platform uses an ultrasonic sensor array,
the arc transversal median method [15], and sensor-based
control to accurately traverse the GVG of an environment.
An omnidirectional camera is used to detect features in the
environment by comparing acquired SIFT keypoints [16]
to a training set of descriptors associated with specific
visual landmarks (primarily doorways). The location of these
features are what constitute the local feature maps that are
associated with edges in the topology. The feature maps are
constructed using conventional Kalman filter SLAM, with
resulting landmark locations for one of the six floors shown
in Fig. 1.

In this section, we will discuss one global localization ex-
periment and one kidnapped robot experiment to demonstrate
the localization process for these two scenarios. We will then
provide statistics regarding the performance of the algorithm
over many trials to provide a basis for the robustness of this
technique. We note that our analysis will focus on achieving
topological localization. This is because our relative metric
localization is a form of mobile robot tracking, which is a
well studied technique with well known results [17].

A. Global Localization Experiment

Here we describe a global localization experiment and
the result obtained when performing this experiment in the
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Fig. 5. A visual representation of the discrete probabilitydistribution during one trial of kidnapped localization. Darker bins correspond to states with
higher probability. Bins that appear faint represent improbable hypotheses that have been pruned from the state space.Each stage represents the following:
(a) initial distribution, (b) first measurement update, (c)second measurement update, (d) third measurement update, (e) reinitialization, (f) first measurement
update, (g) second measurement update, and (h) third measurement update.

provided map. If placed randomly between node54 and55
in the map (see Fig. 3), the robot accesses the GVG edge
and drives toward node54 (m0 = [54, 1]). At this point, the
submap distribution is uniform. In Fig. 4, each bin represents
the probability of each statemk over different stages in the
algorithm, and the uniform distribution appears in (a).

The robot arrives at node54 and updates the state distri-
bution with the equidistance and node degree measurements.
At this point, the robot maintains a higher probability for
submaps with an arriving node of degree3 and an average
equidistance (see Fig. 4 (b)). The robot departs the node
onto one of the edges, which changes the current submap.
Therefore, the motion model is propagated (see Fig. 4 (c)).

The robot then completes traversing the edge and has
built a local feature map of the traveled edge. The robot
arrives atm1 = [56, 0], and updates the state probability
distribution with the measurement model. Here, we separate
the effect of applying each component of the measurement
model to demonstrate the effect of each measurement on the
probability distribution. In Fig. 4 (d) we update with node
measurements at node56, and in (e) we update with the
edge travel distance and feature map. Note that the edge test
eliminates many improbable discrete states, but is not enough
to complete localization due to the ambiguity of the map.

Notice that at step (e), the majority of discrete states
have a very low probability because measurements up until
this point did not agree with the corresponding states. We
prune these states and only update the states that remain.
The robot has not yet localized completely, though, so it
departs node56 and repeats the same process for a new
edge/node. Fig. 4 (f) shows that some states are revived after
propagating the motion model when departing. Fig. 4 (g) and
(h) depict the result of the node measurement update and the
edge measurement updates (travel distance and feature map),
respectively. The robot finally completes the localization,

figuring out that it has arrived at node62 from edge1 (state
[62, 1]) with a probability near99%.

B. Kidnapped Robot Experiment

The following experiment, represented by Fig. 5, is one of
many successful kidnapped robot trials we obtained during
experiments (see Table I). The robot initializes the state
space with a uniform probability distribution and travels from
node7 to 6 and then to11 (Fig. 5 (a)-(d)). This provides
enough information to successfully localize the robot to state
m2 = [11, 0] with 98% probability. When the robot begins
to travel back towards node6, we physically relocate the
robot to another floor (statem3 = [37, 0]). The robot homes
into node 37 and recognizes that the travel distance and
equidistance measurements obtained are improbable given
the expected arrival node. The robot successfully concludes
that it is kidnapped and resets the localization process with
a uniform distribution. The robot later localizes successfully
at node 39 with new information, see Fig. 5 (e)-(h).

C. Overall Experimental Results

The following results were obtained when testing the
localization algorithm on the robot at random initialized
locations in the environment.

TABLE I

ROBOT LOCALIZATION RESULTS

# of trials # of successes # of failures
Global localization 30 29 1
Kidnapped Robot 20 20 0

Total 50 49 1

In Sec. V-C, we briefly discuss the case where a mobile
robot skips over a topological node while traversing an edge,
therefore producing a submap transition that does not follow
the provided motion model. Adopting a more appropriate



motion model is one solution to this issue, but generating
sufficient data on which to base the motion model parameters
would be a tedious operation because, in our experiments,
the robot rarely skips over a topological node. Instead, we
claim that such an occurrence can be treated as a special
case of the kidnapped robot problem. In several trials, we
forced the robot to skip over a topological node by blocking
an entrance to one of the hallways of the node the robot was
approaching. For example, in one trial, the robot traveled
from node 14 to 13 to 15 and correctly hypothesized with
99% confidence that it was located at[15, 0]. When the robot
started moving towards node 16, we blocked the left turn
(leading out of the map), which caused node 16 to appear
like a region of two-way equidistance. The robot skipped the
node and later homed into node 17. The recorded path length
and equidistance measure were not what the robot expected,
and it recognized that it must have been kidnapped. The
robot reset the state space with a uniform distribution and
later localized sucessfully at node 21.

In Table I, we refer to a global localization failure. For
this specific failure, the robot believed a node existed which
was not in the map. We believe this can happen for unstable
meetpoints, as described in [9]. After homing into the false
node location, the robot performed a recursive update for
the discrete submap distribution. Normally, this would cause
the robot to detect a kidnapped situation and reset the
localization algorithm, but unluckily, the measurements for
the false node happened to agree with a different hypothesis
on another floor. The robot claimed that it localized at that
hypothesis with a high probability, and therefore the exper-
iment was unsuccessful. On the other hand, we believe that
additional edge traversals would have detected the incorrect
hypothesis, restarting the localization algorithm as if itwere
a kidnapped robot situation. This is the only failure we
encountered among the 50 total localization experiments.

VII. C ONCLUSION

This paper presents a hybrid localization scheme that
scales well to large environments and robustly solves both
the global localization problem and the kidnapped robot
problem. Localization is separated into two tasks: estimating
a discrete probability distribution over possible submapsand
a continuous distribution over the relative pose within each
submap.

We show that the discrete distribution can be incrementally
updated using a recursive Bayesian filter, and when decom-
posing a map based on the hierarchical atlas, the estimation
of the continuous relative pose within a submap can be re-
duced to mobile robot tracking (which is implementable with
a unimodal filter). This makes our method similar to multi-
hypothesis tracking, except with a key advantage: the number
of hypotheses is limited to the number of submaps in the
environment, which in our experience is small in relation to
the area of the free-space. In addition, our tracking filtersare
reset to known node locations in the map when performing
a discrete state transition. This can correct hypotheses that
have been affected by unmodeled disturbances.

We have performed experiments in a map that spans 6
floors of an office environment and covers a space of 20,000
square meters. Despite having such a large map, with many
topological and feature-based ambiguities, we have shown
that our hybrid method successfully and efficiently localizes
a robot topologically and metrically in real-time for both
the global localization problem and the kidnapped robot
problem.
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