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Abstract— This paper presents a hybrid localization scheme In this paper, we first derive our hybrid localization method
for a mobile robot using the hierarchical atlas. The hierarchical gnd provide motivation for its use with the hierarchical
atlas is a map that consists of a higher level topological g o455 Then, after providing details of the implementation

with lower level feature-based metric submaps associatedith . .
the graph edges. Our method employs both a discrete Bayes W€ present an extensive experiment that covers 6 floors of a

filter and a Kalman filter to localize the robot in the map. large office building with multiple cases of topological and

This framework accommodates localization in a map with feature-based ambiguities.

no prior information (global localization) and localization in

a map with an incorrect pose estimate (kidnapped robot). Il. BACKGROUND

Our.a}p'proach efficiently scales to large enviropments withat A | ocalization Strategies

sacrificing accuracy or robustness. We have verified our metid i o

with large-scale experiments in a multi-floor office enviroment. When addressing the task of localization, every approach
must maintain and update a representation of the robot pose
probability distribution. Many approaches define the state

|. INTRODUCTION space as the continuous spatial dimensions of the environ-

Accurate and reliable mobile robot localization is essgnti ment. A traditional technique for location estimation isis®
for tasks such as autonomous navigation and exploratiofalman filters. Due to the necessity for a multi-modal distri
If a robot is lost or uncertain about its location in thebution when solving the robot localization problem (caused
environment, it must infer its pose based on exteroceptif®y observation ambiguities and initial location uncertgin
information. For most localization techniques, this isane ~ Several approaches choose to allocate multiple Kalman fil-
plished by estimating a probability distribution over bgs ters: one for each initialized location hypothesis [2],.[3]
robot poses in a map. When one location hypothesis domihese multi-hypothesis tracking algorithms do not provide
nates the probability distribution, usually due to sufiitie @ bound to the number of initialized hypotheses and often
informative measurements, localization is complete. initialize additional filters for failed data associatioddso,

Existing solutions using metric maps accurately localiz8ue to odometric error in large-scale maps with limited
the robot to any position in the environment without any priofeatures, false measurement associations may occur which
pose information. However, for a fine resolution, the compucould potentially result in the robot's false overconfidei
tation and storage requirements can become intractable fj# incorrect pose hypothesis.
large environments. On the other hand, methods that employMarkov localization [4] also attempts to localize the robot
topological maps scale efficiently in storage and comportati spatially in the environment. The method first discretizes t
with environment size by limiting localization to topolagi  €nvironment with some desired resolution, then assigns a
node positions. Unfortunately, this gain in efficiency cemeProbability to every state. The number of statesesulting
at the cost of detailed environment information. from this discretization depends on the desired resolaiah

We present a hybrid solution to mobile robot localizatiorih€ €nvironment scale, and processing this representadion
that couples a discrete Bayesian filter for localizing on &0 O(S) complexity [4]. This method does not scale well
topological graph with a continuous Kalman filter for loeali for a fine resolution in a large environment. Monte Carlo
ing metrically within submaps. Our method is implementabléocalization [5] also uses an environmental discretizatis
for real-time, large-scale, indoor applications and selveo its state space, but represents the probability distobugiith
different scenarios of localization: the global localigat @ Set of weighted representative samples of the state space,
problem (when a robot is given a map but has no prioflled particles. The update dil particles can be imple-
pose information) and the kidnapped robot problem (when@ented with complexityO (1) [5]. However, representing
robot is given a map and currently maintains an incorredhe initial uniform distribution of robot pose probability
estimate of its pose in the environment). Decomposin quires a sampling of particles over the entire state space
the environment into submaps, for this hybrid method, i ince the convergence of this method depends on initiglizin
based on théierarchical atlas[1], a topological graph with at least one particle near the true robot pose, the number of

feature-based metric submaps attached to the graph edgdi@rticles increases with increased environment size.
Topological methods discretize the environment to a min-
S. Tully is with the Electrical and Computer Engineeringimal number of abstract nodes in a graph. Thus, topological
Department and H. Moon, D. Morales, G. Kantor, and H. Chosektate space representations generally scale well withiamvi
are with the Robotics Institute at Carnegie Mellon Univigrsi . A hod i logical f
Pitsburgh, PA 15213, USA. {stul | y@ce, hyungpil @ Mentsize. A common method is to use topological features

deryck@ndr ew, kantor @i, choset @s}. cnmu. edu to localize a robot to a node in the graph. Unfortunately,
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Fig. 1. One of six floors collectively mapped using the hiehéral atlas, which is embedded onto the floor plan of Wear Habr 7 at Carnegie Mellon
University. Nodes are shown with circles and landmarks rmedpgdong edges are shown with red (dark) ellipses.

similarity in topological nodes is common, and additionahre pruned based on a naive yes/no heuristic until only one
information is necessary to resolve ambiguities. The @oicandidate remains. We have extended this work with the
of detailed information attached to the topology varies bproposed hybrid solution to allow for accurate metric lecal
implementation, as does the representation of the rob@ pdgation and, more importantly, to provide a robust Bayesian
probability distribution. Some researchers apply Markoframework that, in our experiments, provides a significant
methods [6]—[8], while others applgraph-matching[9]- improvement when handling map ambiguities and kidnapped
[11], which uses observations of neighboring nodes to prunmebot situations.

a set of candidate locations. The complexity of topological

methods varies with the implementation. Il HYBRID LOCALIZATION

One contribution of this work is the following formulation
B. Hierarchical Atlas of mobile_ robot Ioc_alization asa muIti—hypothesis estilomat
iainall d dd imul localizati problem in a hybrid state space: a discrete component
Originally presented to address simultaneous localiratiqyeyifies in which submap the robot currently resides among
and mapping, the hlerarch|cz_zll atla_s combines _the scagablha" submaps of a global map, and a continuous compakient
of a topologlcal representation with the detail of featuréggfines the relative metric pose of the robot in the coordinat
based metric maps. The atlas uses a topology to decompgse,e of that submap. The time stepjs a variable related
the space into submaps which are tractable by conventiongly,e ejapsed time since the robot switched discrete states
metric mapping methods. This allows for a high resolution, oqyivalently, when the robot transitioned between two

representation of the free space while maintaining low Congubmaps). Additionallyj is a discrete time step variable
putation and storage costs for localization and navigation 14+ increments when transitioning between submaps
The topology used by the hierarchical atlas is based on

the generalized Voronoi graph (GVG) [9], the locus ofA- Separating the Task
points equidistant to two or more obstacles, whose nodesTo localize the robot, we must maintain a probability
have a definite location in the free space and whose edgdistribution over this hybrid state space, where the staits
define obstacle-free paths between neighboring nodes. Thisigher probability correspond to likely robot locatiofibe
topology is both abstract and embedded in the free spaggpbability of a hybrid statém,, X;] can be expressed as
and as such can be traversed using sensor-based control. el -1kt
Attached to each graph edge is a feature-bastge map plm, Xelu™, 07, 2%, 4%, ©), @
Both the topological decomposition of an environment andihere »*~! is the collection of discrete motion inputs
the corresponding edge maps can be seen in Fig. 1. (up,u1,...ux—1) that have been applied since the robot began
There have been other mapping strategies which decomm experiment. Each of these inputs causes the robot to
pose a large environment into submaps [12]-[14]; in faathange to a new discrete state and therefore increment the
the term “atlas” originates in [14]. However, the topolody o discrete timestep variablgé. A right or left command at
these approaches are not necessarily navigable usingrsengohallway intersection that causes the robot to turn onto
based control, nor embedded in the free space by definitioa. different GVG edge (and therefore transition to a new
In [1], we introduce global localization for the hierarchic submap) is an example of such a discrete motion input.
atlas. The robot maintains a list of candidate topologicdlikewise, v*~! is the collection of all continuous motion
states and gathers information while traversing the grapmputs @g,v1,...0¢—1) that are integrated while the robot is
States that do not “match” the exteroceptive observatiorigaveling within submapn;. A vector of wheel velocities



or motor voltages is an example of such an input. Theubmap in which the robot was previously located. It is
collection of measurement vectors is denoted:zBywhere important to note that the motion model we adopt for this
(20,71,---21) IS Obtained within submapsm,m1,...,mx) recursive update rule involves the probability of making a
respectively. Finallyy® is the collection of measurementsdiscrete transition between two submapg_; andm. For
(yo,y1,---¢) Observed while the robot travels within submapexample, when using the hierarchical atlas, an appropriate

my. We note that a single submap measuremgntwill  motion model may represent the probability of turning to
include all measurementg. The map used for localization the correct GVG edge. This is unlike conventional motion
is represented by. models in which metric location uncertainty is propagated

The joint probability in Eq. 1 can be manipulated througtand dispersed to accommodate for odometric error.
the definition of conditional probability to obtain

plm, Xe|uF 1 o't 2Ryt ©) =

C. Relative Metric Pose Estimation
The next task is to estimate a continuous probability

p(my|uf =01 28yt 0)  x distribution for the relative metric pos&; within submap
p(Xy, |mp, uF~ 1 0t 2R gyt @), (2) mg. The corresponding term in Eq. 2 can be simplified to
The first term on the right side is a discrete probability p(X¢|lmp, v 71, yt, 0). (4)

distribution over possible submaps,. The second term is ) ) )

a continuous probability distribution over the relativetrie On€ assumption that we make is that a mobile robot, when
pose of the robot given submap;,. In this section, we will Making a transition from submap, ; to submapmn, will -
show that the first term can be estimated with a recursie® located at the origin of the latter when the transition
Bayesian filter and the second term can be reduced to mobf§curs. Although not common for all submap techniques,
robot tracking. This is similar to a multi-hypothesis trak ~ this is the case when adopting the hierarchical atlas. This
solution, except with one key advantage: the hypothesis sitS because all submaps in the h|er_arch|cal atlas are qleflned
is bounded by the number of submaps in the environmerit€tween GVG nodes, so the termination and beginning of
In many cases, this will provide a significant computationafuPmaps always coincide. We can ignare™" in Eq. 4

advantage over other methods. because these motion inputs are applied at the boundaries of
_ _ o submaps and therefore have no bearing on the estimation of
B. Discrete Bayesian Submap Filtering the relative poseX, within the submap. We can also ignore

We have shown that estimating the probability distribution* because all previous measurements have no bearing on
over possible hybrid robot states can be separated into twlee relative pose estimate if it is known exactly tat= 0
tasks. The first task is to estimate a discrete probabilitgnd all relevant current measurements in the veetoare
distribution over possible submaps. When one value in thigresent iny?.
distribution approaches one, we can be confident that theln our case, knowing the relative pose exactly when the
robot is currently positioned somewhere in that correspondobot makes a discrete transition between two submaps
ing submap. The discrete distribution component of Eq. Brovides the following key advantage(X;|m, v, y;, ©)
can be simplified to can be estimated with a tracking based technique throughout

p(mk|uk*1,zk,®). 3) the time the robot_ i_s Iocateql within t_he submap. Tracking

can be solved efficiently using a unimodal filter, such as

We will leave outv'~! because this term refers to motiona Kalman filter. It can now be seen that our estimation
inputs within submapn;, not motion inputs that influence technique is related to multi-hypothesis tracking, witte th
discrete state transitions. We are not necessarily asgumin advantage that we must track at most one estimate per
dependence by dropping this term, though. Any informatiosubmap. This is useful when the number of submaps is small
inferred byv'~! that is correlated withn;, can be included relative to the area of a given map.
as a measurement ir),. For example, we later compute a
path length statistic from the motion inputs! and include IV. PROBABILISTIC MODELS FORLOCALIZATION
this as a measurement when updating the discrete prolgabilit In this section we will define the state space, motion
distribution overn;,. Additionally, we can omiy’ because it model, and measurement models that are used when specif-
is subsumed by*. Using Bayes law, Markov independencejcally applying the hybrid localization technique to the
and the law of total probability, we can rewrite Eq. 3 ashierarchical atlas.

follows: A S s
. State Space
(m |uk—1 Zk @) _ p(zk|mk,®) « . P . . .
pimy 12 - p(zi|uF—1, 251, 0) We define the discrete state and continuous metric state as
Z p(mklmk—lvuk—laG)p(mk—llukiazkil’@)' N ot
Mpg—1 mr = and Xt = Yt
53
bt

This produces a recursive update rule for the discrete prob-
ability distribution, which is now in the form of a mea- respectively. Indexy;, is the GVG node to which the robot is
surement model, a motion model, and a priay,_; is the heading and; is the index of the edge the robot is traversing



- note that the equidistance measurement at each node is stabl

. over repeated visitations. The hierarchical atlas stdias,
\ N \ every node, an equidistance value and its standard davjatio
Y * — which together represent a Gaussian distribution. During
l GVG Edge k localization, an equidistancg, is measured when the robot
. X < onk arrives at a node. The probability of observifiggiven that
©0) the robot has arrived at nods, is
Fig. 2. A typical su_bm_ap with appropriate labels to demaistithe state ) 1 ( (ék _ 5k)2>
space used for localization. p(éklnk) = ——=exp | ——575~— |-
27 (0.) 2(a.)

3) Feature Map / Travel DistanceThe robot constructs a
metric feature map while traversing an edge. The map is built
éing an extended Kalman filter whose sté;econAsists of
the robot pose, the locations of measured landm#rksand
the total distance traveled}, while traversing the edge. The
filter also produces a covariance mat#xfor the measured
fieature map. The probability of measuridg and /). given

(relative to a reference edge of nodg). The origin of the
submap is defined by the location of nodg_;, and the
coordinate frame of the submap is defined so as to align t
locations of both the departure and arriving nodes onithe
axis. The robot pose in the submap is denoted:fhyy,, and
¢, all in the local coordinate frame.

Fig. 2 depicts one possible submap and demonstrates X
specific state space representation used for this lodalizat ("€ traversal of submap, is
method. We note that,, is equal to one for this example ~ exp (=3 (8x — sk)T(P) " (8 — sk))
because it is offset by one in the counter-clockwise diocti p(di, filmi) = (2m)2N |P|3 '
from the reference edge (drawn with an arrow). :

C. Motion Model

B. Measurement Model When the robot arrives at noag_; via edgee;,_1, it must
The measurement, is a vector of all exteroceptive infor- choose a new edge to traverse. We define; as a command
mation gathered during timestépthat can help distinguish for the robot to take a specific departing edge relative to the
candidate submaps. The specific measurement vector us#dving edgee;_; of noden;_;. Thereforeu,_; defines

for this paper is composed of the following discrete andhe desired submap transition.

continuous measurements: Let mp_1 e my, indicate that submapmn; neighbors
5, — Node Degree mi_1 Via the departing edge;_,, and letmy_; =" my
é: — Node Equidistance indicate that submapny, neighborSmk_l via a depgrting
d, — Edge Travel Distance edge unequal ta,_,. The motion model we use for discrete

fr. — Feature Map Landmark Locations submap localization is

. Uk—1
Each of these terms will be precisely defined in the subsec- pluk—1)  if mpy =
tions that follow. p(mrmi—1,ur—1,0) = % if me_1 = my
The measurement model is defined: 0 otherwise.
p(zklmi,©) = p(Ok, xs di, fr|mr, ©) This represents that the robot traverses the selected edge

index ui—1 with probability p(ui—1), and the remaining
1 — p(uk—1) probability is evenly distributed among all
The node degree and equidistance measurements are dther edges of the statei,_;. This is to account for
dependent and therefore can be separated into the fiegstoneous departures for structurally complicated nottes.
two terms of Eq. 5. The feature map landmark locationsyormal indoor environments with orthogonal edggs,, 1)
on the other hand, are correlated with robot motion, andpproaches.0, which means the robot almost always drives
therefore correlated with the travel distance. We will nowlown the correct edge after leaving a node. For statethat
define each component of the measurement model and thew not neighborn_1, the probabilityp(my, |my_1, uk—1, ©)
corresponding probability distributions: is zero. This does not imply that we are ignoring the chance
1) Node degreeThe number of edges connecting a nodef passing through a GVG node. Instead, we claim that
to its neighbors is referred to as its degree. The measurgdch an occurrence is a special case of the kidnapped robot
degreed;, at timestepk is invariant over repeated visitations problem. In fact, the robot accidentally kidnaps itselfu$h
to that node, so we defing(dx|ms) accordingly, using solving the kidnapped robot problem will be sufficient, whic
empirical data. is discussed in Section V-C
2) Node equidistance valueNodes in the GVG are
defined as equidistant to three or more obstacles. Thus, when
the robot arrives at node, the distance to its three or moreA- Global Localization
closest obstacles approaches equality. The mean of thesé&lobal Localization is performed by initializing the dis-
values is labeled thequidistance valuelt is important to crete state space with a uniform probability distribution.

POk |mu)p(Exlmi)p(dy, frlmu). (5)

V. LOCALIZATION ON THE HIERARCHICAL ATLAS
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Fig. 3. Six floors of Wean Hall at Carnegie Mellon Universitene used for localization experiments. Here, the node/¢édjpelogical representation is
embedded in a sequence of floor plan images. Arrows desiginateeference edge for each node..

The robot starts in an unknown place in a priorly mappethe probability distribution is concentrated to one togidal
environment and is told to run an algorithm so that the robaitate. At this point, the continuous tracking filter asstada
is autonomously traversing GVG edges. When the robaetith that submap will provide the most likely metric locatio
homes into its first node, it can apply a measurement update
(except in this case there is no feature map to compare, Adgorithm 1 Hierarchical Atlas Hybrid Localization
that component is not included). Then the robot chooses a: InitializeUniform()

departing edge and propagates the motion model. The instant for £ <« 1 to 7' do

the mobile robot departs the GVG node and begins traversing:
a new edge, the robot has started exploring a new submap an
has begun traveling a path of two-way equidistance towarcb:
another node in the map. 6:

During the edge traversal, the robot estimates the rela’:
tive metric posep(X;|my,v'~1, 4", ©) using a conventional &
Kalman filter based localization method. This filtering task &
is inexpensive because the size of the Kalman filter state #§:
limited to the degrees of freedom of the robot. On the othe}!:
hand, the robot must maintain a bank of these Kalman filters:

TraverseEdge(; 1)
for all m;, do
p(myg) < >, pOmgluk—1,mk—1) p(mi_1)
end for
p(zk) < 0
for all m; do
if p(my) <+, PruneStatef)
elsep(zx) — p(zk) + p(dk, €k, dis, frolmu) p(my)
p(my) < p(Ok, ek, di, fulme) p(me)
end for

to estimate the relative metric location: one per submap. #3:  if p(zx) <, InitializeUniform()
this turns into a large computational burden for numerou4: ~ €lseNormalize()

submaps, the robot should simply wait until the discreté5: end for

distribution is better resolved, and then only estimate the

relative metric pose for likely submaps. B. Reducing the State Space (Hypothesis Pruning)
_ While the robot estimates its relative pose in the submap, The number of discrete states in the discrete probability
it is simultaneously building a feature map using convengistripytion is determined by the number of submaps in the
tional EKF SLAM. This is independent of the relative posgyopal map. Therefore, the computational complexity will
estimation, and is only for incorporating metnc_mforrmtl scale linearly with the number of submaps. One way to
into the discrete submap update, as discussed in Sec. IV-Bidqyce computation is to prune out hypotheses from the state
When the robot arrives at the destination node, it cagpace if they have a negligible probability. Eliminatingeon
apply a full discrete measurement update (using the medsuisr more submaps from the state space can often remove a

node equidistance, node degree, and the feature map bgijnificant region of the global map, narrowing the search.
using EKF SLAM during the edge traversal). When the next

motion model is applied, the continuous tracking filters can
be discarded and reinitialized at the origins of each submaphis pruning method is an approximation and can be risky
The robot continues traversing the GVG until a majority obecause no matter how unlikely a hypothesis may become,

it p(my|u®~1, 2% ©) < v, removem,,
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Fig. 4. A visual representation of the discrete probabititgtribution during one trial of global localization. Darkbins correspond to states with higher
probability. Bins that appear faint represent improbablpdtheses that have been pruned from the state space. Eaghrepresents the following: (a)
initial distribution, (b) initial node update, (c) motionadel, (d) second node update, (e) edge update, (f) motiorein(g) node update, and (h) edge
update.

there will still be a non-zero chance that the robot is lodateis restarted. The detection of a kidnapped robot is shown in
in that submap. By refusing to apply the Bayesian update f@lg. 1 on line 13.

eliminated states, there is no way for the state to regain any
portion of the probability distribution (even when mataiin o . ]
well to map measurements). We argue that this situation is aOur localization experiments span six floors of a large
special case of the kidnapped robot problem: the robot h&#fice building environment (Wean Hall at Carnegie Mellon

a false estimate of its location (in one of the states thaehayniVersity), see Fig. 3. This map spans an area of size greate
not been pruned), when in reality it is located somewher®an 20,000 square meters and contains numerous topolog-
else (in one of the pruned states). Therefore, we will choode?! and feature map ambiguities, resulting in a rigorous
to incorporate pruning due to its computational advantage§st for localization algorithms. It should be noted that th
but provide a solution to the kidnapped robot problem thaintire map was constructed online prior to any localization
encompasses the issues associated with removing hypsthe@gPeriments using the hierarchical SLAM method in [1].

from the Bayesian update. The algorithm for updating the Our experimental platform uses an ultrasonic sensor array,
discrete probability distribution, which includes prugjris the arc transversal median method [15], and sensor-based

VI. EXPERIMENTAL RESULTS

outlined in Alg. 1. control to accurately traverse the GVG of an environment.
An omnidirectional camera is used to detect features in the
C. The Kidnapped Robot Problem environment by comparing acquired SIFT keypoints [16]

The kidnapped robot problem is when the probabilit tq a training set O.f de_scrlptors associated V\_”th specific
T : isual landmarks (primarily doorways). The location ofgbe
distribution is biased toward one or more incorrect hypeth :
eatures are what constitute the local feature maps that are

ses. This may happen if there is an unmodeled mouoarllssociated with edges in the topology. The feature maps are

disturbance: for example, the robot could be phySK:a”%onstructed using conventional Kalman filter SLAM, with

picked up and moved to another location, the robot ma . ) i

; : sulting landmark locations for one of the six floors shown
skip over a topological node, or the robot may be Iocatecrf Fig. 1

in a pruned state. To detect such an occurrence, we monitor '9" =

o . ; In this section, we will discuss one global localization ex-
p(zk), which is the the probability of making a measurement . ; :
. : . eriment and one kidnapped robot experiment to demonstrate
2, at timestepk. This can be computed as follows (using th

law of total probability): he I(_)calizat_iorj process _for these two scenarios. We V\fnlh'Fh
' provide statistics regarding the performance of the allyori
p(z) = ZP(2k|mk) p(ma). over many trials to provide a basis .for t_he robustness _of Fhis
. technique. We note that our analysis will focus on achieving
topological localization. This is because our relative naet
A small p(z;) value suggests that new measurements dgcalization is a form of mobile robot tracking, which is a

not agree with any of the submap hypotheses. Thereforge| studied technique with well known results [17].
if p(zx) falls below a threshold, we will conclude that the

robot has been “kidnapped”. At this point, the probability®- Global Localization Experiment
distribution over possible submaps is reset to a discrete Here we describe a global localization experiment and
uniform distribution, and the global localization algbrit  the result obtained when performing this experiment in the
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Fig. 5. A visual representation of the discrete probabititgtribution during one trial of kidnapped localizationaifRer bins correspond to states with
higher probability. Bins that appear faint represent inbpitde hypotheses that have been pruned from the state §pmaestage represents the following:
(a) initial distribution, (b) first measurement update, fefond measurement update, (d) third measurement upelatejn(tialization, (f) first measurement
update, (g) second measurement update, and (h) third neeasntr update.

provided map. If placed randomly between nddeand55  figuring out that it has arrived at nod@ from edgel (state
in the map (see Fig. 3), the robot accesses the GVG ed{§i2, 1]) with a probability nean9%.
and drives toward nod&: (mq = [54, 1]). At this point, the ) )
submap distribution is uniform. In Fig. 4, each bin représenB- Kidnapped Robot Experiment
the probability of each statey;, over different stages in the  The following experiment, represented by Fig. 5, is one of
algorithm, and the uniform distribution appears in (a). many successful kidnapped robot trials we obtained during

The robot arrives at nodet and updates the state distri-experiments (see Table I). The robot initializes the state
bution with the equidistance and node degree measuremersgace with a uniform probability distribution and traveisr
At this point, the robot maintains a higher probability fornode7 to 6 and then toll (Fig. 5 (a)-(d)). This provides
submaps with an arriving node of degr@end an average enough information to successfully localize the robot tdest
equidistance (see Fig. 4 (b)). The robot departs the node2 = [11,0] with 98% probability. When the robot begins
onto one of the edges, which changes the current subma@.travel back towards nodeé, we physically relocate the
Therefore, the motion model is propagated (see Fig. 4 (c)yobot to another floor (stateis = [37, 0]). The robot homes

The robot then completes traversing the edge and h¥0 node 37 and recognizes that the travel distance and
built a local feature map of the traveled edge. The robdquidistance measurements obtained are improbable given
arrives atm; = [56,0], and updates the state probabilitythe expected arrival node. The robot successfully conslude
distribution with the measurement model. Here, we separaifgat it is kidnapped and resets the localization process wit
the effect of app|y|ng each component of the measuremeﬂtuniform distribution. The robot later localizes SUCCBgﬁf
model to demonstrate the effect of each measurement on tienode 39 with new information, see Fig. 5 (e)-(h).
probability distribution. In Fig. 4 (d) we update with node
measurements at nod#, and in (e) we update with the ) ) )
edge travel distance and feature map. Note that the edge test he following results were obtained when testing the
eliminates many improbable discrete states, but is notgmoulocal!zatlo_n aIgonth_m on the robot at random initialized
to complete localization due to the ambiguity of the map. locations in the environment.

Notice that at step (e), the majority of discrete states
have a very low probability because measurements up until
this point did not agree with the corresponding states. We

C. Overall Experimental Results

TABLE |
ROBOT LOCALIZATION RESULTS

# of trials  # of successes # of failures

prune these states and only update the states that remair-ggpariocaization 30 9 1
The robot has not yet localized completely, though, so it Kidnapped Robot 20 20 0
departs nodeéh6 and repeats the same process for a new Total 50 49 1

edge/node. Fig. 4 (f) shows that some states are revived afte

propagating the motion model when departing. Fig. 4 (g) and In Sec. V-C, we briefly discuss the case where a mobile
(h) depict the result of the node measurement update and ttobot skips over a topological node while traversing an edge
edge measurement updates (travel distance and feature mapgrefore producing a submap transition that does notviollo
respectively. The robot finally completes the localizationthe provided motion model. Adopting a more appropriate



motion model is one solution to this issue, but generating We have performed experiments in a map that spans 6
sufficient data on which to base the motion model parameteiteors of an office environment and covers a space of 20,000
would be a tedious operation because, in our experimentgjuare meters. Despite having such a large map, with many
the robot rarely skips over a topological node. Instead, wpological and feature-based ambiguities, we have shown
claim that such an occurrence can be treated as a spediat our hybrid method successfully and efficiently locadiz
case of the kidnapped robot problem. In several trials, we robot topologically and metrically in real-time for both
forced the robot to skip over a topological node by blockinghe global localization problem and the kidnapped robot
an entrance to one of the hallways of the node the robot wasoblem.
approaching. For example, in one trial, the robot traveled
from node 14 to 13 to 15 and correctly hypothesized with
99% confidence that it was located[a6, 0]. When the robot ~ The authors would like to thank David Lowe for providing
started moving towards node 16, we blocked the left turf®lFT source code, Wolfram Burgard for his advice, and
(leading out of the map), which caused node 16 to appe@gron Hoy for his assistance with experiments.
like a region of two-way equidistance. The robot skipped the
node and later homed into node 17. The recorded path length N . 3
and equidistance measure were not what the robot expecteld! D sen. D Morales, D. Silver, G. Kantor, |. Rekleitiand H. Choset,
: . . . e hierarchical atlas,JEEE Transactions on Roboticsol. 21, pp.
and it recognized that it must have been kidnapped. The 473 — 481, June 2005.

robot reset the state space with a uniform distribution and?2] P. Jensfelt and S. Kristensen, “Active global localizatfor a mobile
; robot using multiple hypothesis tracking/[EEE Transactions on

later localized SuceSSfu”y at node 21. . i . Robotics and Automatigrvol. 17, no. 5, October 2001.

In Table I, we refer to a global localization failure. For [3] S. Roumeliotis and G. Bekey, “Bayesian estimation andmia

this specific failure, the robot believed a node existed twvhic filtering: A unified framework for mobile robot localizatignin Pro-

: : ; ceedings of the International Conference on Robotics artdrAation
was not in the map. We believe this can happen for unstable April 2000,

meetpoints, as described in [9]. After homing into the false[4] p. Fox, W. Burgard, and S. Thrun, “Markov localizationr fmobile
node location, the robot performed a recursive update for robots in dynamic environmentsJournal of Avrtificial Intelligence

: g : : Researchvol. 11, pp. 391-427, 1999.
the discrete submap distribution. Normally, this would s=u 5] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust teonarlo

the robot to detect a kidnapped situation and reset the  |ocalization for mobile robots, Artificial Intelligence vol. 128, no.
localization algorithm, but unluckily, the measuremerus f 1-2, pp. 99-141, 2000.

: : ] |. Nourbakhsh, R. Powers, and S. Birchfield, “Dervish: Affice-
the false node happened to agree with a different hypothes[g navigating robot”Al Magazine vol. 16, no. 2, pp. 53-60, 1995,

on another floor. The robot claimed that it localized at that[7] R. Simmons and S. Koenig, “Probabilistic robot navigatin partially
hypothesis with a high probability, and therefore the exper observable environments,” iRroceedings of the International Joint
iment was unsuccessful. On the other hand, we believe that Conference on Artficial INtelligencel 995.

. X A. Cassandra, L. Kaelbling, and J. Kurien, “Acting undercertainty:
additional edge traversals would have detected the incorre ~ piscrete bayesian models for mobile-robot navigationPinceedings
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